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A Slidig Memory Covariance Circular
Lattice Filter and Its Application to ARMA Modeling
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Abstract- A sliding memory covariance circular lattice(SMC-CL) filter and an efficient
ARMA modeling method using the SMC-CL filter are presented. At first, SMC-CL filter is
derived based on the geometric approach. Then ARMA process is converted into 2 channel
AR process, and SMC-CL filter is applied to it. The structure of SMC-CL filter becomes
simpler in case of ARMA modeling due to the whiteness of a driving input process. The
parameters of ARMA process can be obtained by the Levinson recursions from the PARCOR
coefficients of the second channel of the filter. Computer simulations are performed to show
the effectiveness of the proposed algorithm.
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1. Introduction

Nowadays AR and ARMA modelings are widely
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used in various areas of statistics, geophysics, signal
processing and system theory. Often the dynamics
and the characteristics of a real system can be pro-
perly described by an ARMA model, so ARMA
modeling gives better performances than AR mode-
ling. But AR modeling has been actively used in
practice, while the use of ARMA modeling is somew-
hat limited due to the complexity of the model fit-
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ting algorithms.”

However, some of the recent works provide rela-
tively efficient ARMA modeling techniques. Parti-
cularly, fast algorithms for on-line ARMA modeling
have been developed and they have the advantages
of the computational efficiency and the good nume-
rical properties.?™®

One of the popular techniques for on-line ARMA
modeling with the fast algorithms is to convert
ARMA process into a two channel AR process.In
that case the hypothetical input estimation proce-
dure is necessary because a driving white process,
which is really unknown, has to be applied to the
parameter estimator as input together with the
observations, To overcome this difficulty the boot-
strapping procedure is usually taken, but it requires
considerable amount of the calculation burden in
addition.*”

Lately circular lattice(CL) filter was proposed
by Sakai for the prewindowed data set®® He also
showed that it can be a good alternative for ARMA
modeling.'” Since the data flows between each chan-
nel of CL filter forms a circle, matrix operations
accompanying usual multichannel processing algo-
rithms are replaced with only simple scalar opera-
tions, and therefore the computational effort is fairly
reduced.® Of course, CL filter also preserves the
advantages of lattice type algorithms,

Lattice algorithms are classified into four groups
by choosing the type of the window on the data
set, i.e, the autocorrelation form, the prewindowed
form, the postwindowed form, and the covariance
form_ So far most of the works on lattice type al-
gorithms have been done for the prewindowed form
by virtue of its simplicity. But the covariance form
is considered as superior to the others from the view-
point of the accuracy, because it takes no assump-
tion on the value of the data outside the given
observations, thereby eliminating any undesirable
end effects

In this paper, a sliding memory covariance cir-
cular lattice(SMC-CL) filter and an efficient ARMA
modeling method using SMC-CL filter are presen-
ted. First we derive SMC-CL filter using the pro-
jection operator, And then SMC-CL filter is applied
to ARMA modeling after the ARMA process is
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converted into a two channel AR process,

2. Circular lattice filter

Here we give a brief review of CL filter, CL filter
is based on Pagano’s work”, the one to one relat-
ionship between multivariate autoregressions and
scalar periodic autoregressions,

Let us consider the following d-variate p-th
order AR process

X()=~TAX 1= =U0) 2.1)

where {U( - )} is an uncorrelated vector sequence
with zero mean and cov[U(t)]=W. Also let us
define a scalar process Y(t) from X(t) by

Yh+id)=X, (1) (2.2)

where x(t) is i-th element of X(t).

From Pagano’s theorem”, the relation (2.2) is
satisfied if Y(t) is a scalar periodic AR process of
period d. Thus Sakai derived CL filter by applying
the technique of linear prediction to this scalar pro-
cess Y(t), instead of treating X(t) directly® As
a result, matrix operations are avoided.

Let us express the j-th order i-th channel for-
ward and backward prediction errors by

e{(t)zY(i+td)+:Z:}lci(k)Y(i+td~k) (2.3)

J

70 (=Y G itd- j)+zkj_ dli+1-k)Y (i +td—k+1)
(2.4)

where {ci(k)} ., {d; (k)} are the coefficients of the i-
th channel of the forward and backward linear pre-
dictors of order j. These predictor coefficients{c: (k)}
,{d; ()} are determined so as to minimize Ei(e: (t)%
, E {(5 (1))}, respectively. Then we obtain the
circular lattice structure

et ) =el () +ai"yi, (1) (2.5)

777 (=0l (0 +B" alt) (2.6)
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where the PARCOR coefficients a:*' (=ci*' (j+1)),
Bi*' (j+1)) are given by

al”=—Ele()n (O /EL ()2 (2.7)

SM=—Ele (i (O/EHe () (2.8)

However, (2.7) and (2.8) cannot be used in
practical situation because the value of expectation
is not given. So it is necessary to estimate ai*', 8/’
based on the given data sequence in least squares
sense,

In the next section, we present a recursive least
squares SMC-CL filter.

3. Sliding memory covariance circular
lattice filter

The covariance type algorithms obtain an es-
timate based only upon available data, thereby
excluding the end effects caused by assuming the
data is zero outside the observation interval, as is
the case in the prewindowed type filters. Thus they
are often used where an accurate estimate is desired
given relatively short data,

So a sliding memory covariance circular lattice
filter is presented in this section, Unlike the growing
memory covariance type algorithms, the sliding
memory covariance type algorithms compute least
squares estimates based on the data contained in
a window of fixed length which slides across the
sequence of data one by one, Past data samples
outside the window are therefore totally forgotten,
As a result, it has the ability to track the time
varying parameters of nonstationary process,

Here the geometric approach is employed to
derive the SMC-CL filter, which is an efficient tool
for the derivation of lattice type recursive least
squares algorithms. By the projection theorem, the
least squares estimation can be interpreted as the
orthogonal projection of a new data vector on the
subspace spanned by the past data vectors®

Let us consider a d-variate AR process X(t).
Assuming a window of length M, at time t ket and
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bra vectors are defined respectively by

X > 8% (t—MA 1) e x:(1) ] (3.1)

<Xt ‘ zé 'Xt>lz

where | x;){" denotes the transpose of |x,); and
| x; >t lies in Hilbert space H,(=RM). Also a shift
operator s is defined by

|5:1X\>t=1xd>z—1 o (32)

[s7hx> = Ixi > 1=2,3,-,d

Let | Y:in>t be a data matrix of dimension
n related to i-th channel, and Y, ;). That is,

IYir > e=[|s"" x>y, oo cIsTMxe> ]
Y 5. n ¢ =subspace spanned by
[s7'%> 0 o 157 > (3.3)

From (2.2) and (2.3), the prediction error vec-
tor of |x:) is given by

let>= x>+ 1Y, wa>e<lle?>, (3.4)

where c¢;>>:is the predictor coefficient vector defined
by

> O[cP>(1t), ¢T @ t), - cHn )] (3.5

Each channel of p-th order SMC-CL filter
minimizes the sum of squares of prediction errors
defined by

SHOAY , (100)=<elel>,  (3.6)

~M +1

Then the least squares solution of predictor
coefficients is obtained by

fel>i=—<Yuu n|Yt,1. >0 <Ya alx>: 3.7)

Substituting (3.7) into (3.4),

le?> = |x:>=|Yuun>:<YurnlYira >3
<Yiunlxi>
=0 1Yura><YoralYura>t"
<Yurale) x> (3.8)

Thus the projection operator Py n¢ and the
orthogonal projection operator an,.,n,, are defined
as follows,
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})Yi.l.’n.! é ‘Yiy 1. 1'L>IE<Y141v n }Yi, 1. ﬂ)l (3 9)

|YLlTl>l<Yll ﬂ‘Yl 1. 7L>[
(3.10)

Yllﬂl

<Yisnle

These operators satisfy the symmetry and the idem-

potence.
P-P=P, P'=P
P .pt=p pY=p’ (3.11)

In the same manner, the backward prediction
error vector of | s ™, is given by

=Prran 15 ™0 >0 (2.12)

N>
Here we introduce the following two pinning
vectors acting as time annihilators:

(3.13)

(3. 14)

Several definitions of variables essential to the

derivation of the algorithm are presented in table 1.

Table 1 Summary of the definitions of the filter variables.
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Yivnie=Youn OPy s %>,

=Y. a:BInt,>, (3. 24)
Yion t=Yon OPyvin x>

:Yi,l.n.t® !E?>r (3.25)

where @ is the direct sum. Hence, from (3.8), (3.
12), (3.24) and (3.25), the order update formulas
for forward and backward prediction errors are given
by

er > =[eP> = [pt > <nialnia >y

<ntalet>, (3. 26)
In? > =t > le®>,<eliet>!
<5’i”777il-l>t (3. 27)

In the above recursions, we need 7¢>. for i=1.
From (3.2) and (3.12)

(3.28)

nE>=In3>.0

Taking the last element of (3.26) and (3.27),
we have

Variable Deflnmon L Meamng 7 ;,,,, B B -
el (u) (x| e¥): forward prediction error of x,(t) T (3. 15)
X (1) {n*| el)e forward prediction error of x (t—M+1) | (3.16)
nit (1) {nlpi'n backward prediction error of s "x;(t) \I (3.17)
7" (1) ™ nl backward prediction error of s "x (t—M+1) ‘ {3.18)

At \5,15,/ Tk owa (e () (3.19)
(1) Lo lan ; Sk wa (F(K))? (3.20) |
A1) Lel |l ook e wa (eF k) R (K))? (3.21)
! (t) —Ak ) /3 () forward PARCOR coefficient (3,22)

1 B t) — At ol (U backward PARCOR coefficient L (3. 23)

To get the order update recursion, we first take
the orthogonal subspace decomposition:
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i) =(xlp?=nt,(0)+

+87 1 () e T (1) (3. 30)
and we also get from (3.28)
ne(t)=nit—1) (3.31)

The relations (3.29) through (3.31) require the
update recursions for o7'(t), . (t) and A7%(t)
to calculate the time-dependent forward and bac-
kward PARCOR coefficients «f*’ (t), A" (t). The
computation of these variables entails the time
update, However, in contrast with the prewindiowd
form, SMC type filter needs backward time update
as well as forward time update in order to reject
the influence of the data outside the window,

Time update consists of two procedures;first,
the backward time update to exclude the influence
of the past data is carried out, and then the forward
time update to obtain the new information from

AT =& Py IXes™ ),
Tt a*y e x*ln)/cos? 6% a (t—1)
=AMt~ D+ -Dnf t—1)

Jcos? 8% ,(1—1) (3. 35)
where 7% (t—1) 2, [Pyone, s " %00,
?7-1(1_1)9 (s 'x, 1P‘§Li-|vnv e |
!Svnfl;t te1 Z?(‘fl) = <;t
[P Fumm s 87" X000
Thus we get
GHi—D=0%t—1) et (1 —1)%/
os? 8% (1—1) (3. 36)
??—1 (Y_l): T (tAl)AU?-nl (t_l)z/
/cos? 8%, . (t—1) (3.37)

Att—D=a%i—1) — e (t—1p*" (t—1)
Jcos? 8% (t—1) (3.38)

From 3), for any vector |u), | v)i€H,, the
general backward time update formula is given by

<ulPyvin . lv>.=<u |P$l.xvnv! v >,
+<Uptz.,.mz [ 2*> 0 < 2% [Py V> /
cos® 8%, (1) (3.32)

where |[v>:2[0v(t—M+2)--v(t)], |Yen>: &
(Is7'%>. |s7%%>:), and cos® @0 (1) & < n*]
Pyimie | 7 >: Here ¢,n(t) is the angle
[¥ cua> and | Yoan >, and cos? g n(t) can be inter
preted as a measure of the influence of the past data,
From (3.11), (3.19)-(3.21), (332) and (P'v|
Pu =0,

between

0?0_1):&1 lpém.n,t-. |X1>:~1+ <E?|7r*> -1
gﬂ*|€7>z-1/cos’0ﬁn(t, —1)
=of(t—D+etGt—1)%/cos’ 8% ,(t—1)
(3.33)

Rt ="YX P rvvne s Is7P% 00
+ %, |71'*>z—1<7f*'77’t'4>t~1/€05207.n(t—‘l)
==7 =D+ —1) /cos’ 8. (t—1)
(3.34)
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To compute the above update formulas, the
values of ¢} (1—1) . 7¥ (t—1), and cos® 6% (t—1)
are needed. Taking the first element of (3.26) and
(3.27),

e ()= ()t (R (1) (3.39)

) = ()87 (1) e ¥ (1) (3. 40)

Also from (3.24) and the definition of cos® 8% (t),

cos® @ ns (1) =cos?8¥ o () — (2% ()2 /2%, (1)
(3.41)
Now we proceed to forward time update to

compute of(t), f:(t1) and AZ(t). From3), the
general forward time update formula is given by

<U|P¢¢.|yn,t ‘V>l= <’E|P$t,1vn. t l V>l
+ Q| Prun e |20 (x| Pyn e V)
/(.'«OS2 /] i n(t) (3 42)

where V>4 (v(t—=M~+1 v(t—=1) 0), |Yu>:
A(|s'x>e|sT"x>:) and cos® An(t) =< |

Pyiune | 7. Here 6i,n(t) is the angle between
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l Yl,l,n>t and l Y],l,n>[, and GOS2 gj,n(t) can be
interpreted as a measure 0 the new information

contained in the current data.

From (3.42) and <x¢|Poin:|s "' > = <x
[Péoine 1 |s™™ x>, we have
o~ 1 ~ .
U?(T]:Qxilpﬁ.‘.n,z|Xi>t'+ <E¥17[,,\’z’\ﬂ‘£?>,

Jeost8, (1)

=t (=14 el (1) /cos?0,.,01)  {3.43)
) 5 H)Yi.nnri\"nl;i:)r
+ ,In T eost 8,,00) (3.44)
Folt—1)+ 9t ()% /cos? Bin (t)
AT =GP ]s XD
5 Py T e Py s 000 o/
cos® G, (1)
=AMt~ 14 eM)n?

V/cost 8, (1

(1
(3.45)

Table 2 SMC-CL Filter algorithm

INITIAILZE
AN =na(-1 =g
GV HE

(i—1=0

1) = small positive value

FOR =0 TO T
FOR i=1 TO d
i) =n%)=x; (1)
e () =nF ) =x, t—-M+1)
costBio{t)=cos?8¥,tT)=1
FOR n=0 TO min{p,t{-—1
(IF i=1, 28()=n%0-D.78) =% (1)
A?(t)=Al( 1)+Ei()7]t1 t)/cos® 8 ,a(t)
ot (t)=0o"(1—1)+eT(1)2/cos? B, n (1)
) =72 (- D)4 9%, (1) /cos? B ,a(1)
—Aa) /7t ()
P =—at)/d 1)

et (W)= +a™ (t)nh, (1)
T ) =t () FRTT (e (1)
cos® 8 ;. nH(Y)‘(OSzﬁi.n(‘) -7 A 2P ()

e () =e¥ ) +a (1)t (1)
77?"“ (1) w771 1(1 4/9"”() i)
Z?(‘)* A~ et (1)t (1) /eos? 6%, (1)
oP(t)=al(t)—etm(t) /cos 8% 4 (1)

)= () ¥ (1) cost 0% L (t

)

(
cos® 8F ny (t) =cos? 8T () —n¥h () /2, (1)
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Also from(3.24) and the definition of cos® ga(t),
the recursion for cos® g, 1(t) is given by

cos?i () =cos® 8, . (t)— (2 (427 (1)

(3. 46)

The resultant SMC-CL filter algorithm is sum-
marized in Table 2. SMC-CL filter consists of two
prewindowed type CL filter with identical time
varying coefficients:one is for obtaining the new
information from the current data, and the other
is for eliminating the influence of the past data.
Thus the computational burden increases more or
less, and SMC-CL filter requires that all data sam-
ples in the sliding window to be stored. Each channel
of the filter runs in parallel.

Because the influence of one data is completely
removed after M step in SMC-CL filter, the initidl
conditions are the same as the prewindowed CL
filter, and SMC-CL filter becomes identical with
the prewindowed CL filter, when t{M,

4. ARMA modeling using SMC-CL filter

Like other lattice filters, CL filter can be used
for ARMA modeling'”. Here we apply SMC-CL
filter to ARMA modeling and induce an efficient
feature of the filter,

Consider the ARMA(p,p) process

y(t)=- i}_ﬁ“aiv(t‘"n)'1*§)b,e(t'*1) (4.1
where bo=1, and {e(t)} is a white sequence with~N
(0,1). If we convert y(t) into a 2 channel AR
process X(t) defined by X(t) = [e(t) y(t)], we
can now apply SMC-CL filter to X(t) with d=2
instead of treating y(t),

The following special properties due to the
whiteness of e(t) are still satisfied in SMC-CL
filter as well as in the prewindowed CL filter.®

E(e (1) n2(t—1)1=Efe(t)

e =pRT1""=

a;=—Ele3 ()i () 1/Etn ()Y
=—Ely(t)e(t){/Fle(t)?]=—1
for n=10, - 2p -1

n7(t—Di=0
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¢
--1) 4.2)

That is, the PARCOR coefficients and the predic-
tion errors of the first channel need not be cal-
culated. Furthermore, from (3.39), (3.40) and
(4.2), we know SMC-CL filter satisfies the pro-
perities (4.3) in addition,

) = 1)

e )= ()=e(t—M+1) for n=0, -,
2p 1 4.3)

¥t (1) =3t 1)

So the filter structure becomes quite simple in
consequence. However, we cannot use SMC-CL
algorithm directly, and the hypothetical input
estimation is necessary, for at time t we must know
the value of e(t) which is not available, But we
note from (4.1) that e(t) is considered to be an
estimation error of y(t) based on {y(t-1), e(t-1),

-, y(t-p), e(t-p)}.

Thus we estimate e(t) by the joint process

estimation of y(t) based on {y(t-1), e{t-1), - - - -,
y(t-p), e(t-p)} whose orthogonal basis is{53 (1— 1),
7 (t—1), -, PP (=1},
M) DePt)=v () +y'pilt—1)+--
4yt i --1) (4.4)

where

Y= Ele () p it
Ef(pp-'(t- 1)) (4.5)

Computing (4.4) and (4.5) recursively from
the data entails the least squares joint process
estimation algorithm by the same procedure in
section 3. The resultant recursion formulas are

AT =A3G—1)Fe2(1) k1 —1) /eos? 8y, alt)

(4. 6)
YD) =A%) /i 1) (4.7)
eV =eg () +HY™ (Ot t—1) (4. 8)

S2lolg oimal ZEAY s X} UH Y ARMARYYO2 S8

3 (t—1) %7 (t—1)
(4.9

cos?G n(t)=cos’ 8, ,(t)—

e (=)™ (-1 (4. 10)
*"(1*1)/00@ 8% .(1)
(4.11)

cos? 0¥ ni () =cos? ¥ n(t) — " (t—=1)7/
rP—1) 4.12)

where the variable 77 (t-1), 7*"(t-1) and
(t-1) are already calculated in SMC-CL filter,
so the recursions (4.6)-(4.12) run well without
any trouble,

Thus we can proceed ARMA modeling with
two step procedure:at first step we compute &
(t), the estimate of e(t), using (4.6)-(4.12), then
the parameters of the SMC-CL filter are com-
puted using y(t) and ¢’ (t) as the second step,
This modeling scheme is simplified more or less
by the following relations,

Let us express the two linear spaces spanned
by n variables {e(t), y(t-1),
riables {y(t-1), e(t-1), - -
pectively. By the orthogonal subspace decomposi-

-} and n-1 va-
- }as Fz,l,n, Fl,x,nq res-

tion,
l“Z,I.Tli[:l.LTL—l@e(t) (4. 13)
Then
) =v({)— Ely(t) [Fa af

=v({t)~Ely(t) IFuund —Eiv{t) le(t)}
=e 1) —elt) (4.14)
In the same manner, e¥"(t) is given by
ety =e¥ ' t)—e(t~M+1) 4. 15)
Also from (4.2) and (4.14),
eft'=—Ele FO)n)/Ebpi(t)
_"L{Uz (1—— Diley ' (t)—e(t))t/
Edpti(i- 1) =yn (4. 16)
243



Though the relations (4.2) and (4.14)-(4.15) are
valid in the strict sense only when the estimated
input e(t) is the actual e(t), they work well under
certain conditions, and are often used in system
identification,

The resultant SMC-CL filter algorithm for
ARMA modeling is summarized in Table 3,and
its feature is shown in Fig.]1.

It is easy to obtain the parameters of an
ARMA process y(t) given by (4.1) from the filter
variables in Table 3.

Let Y(t) be a scalar periodic AR process
corresponding to X(t).

Y (+id)=x(t), i=1, 2. 4.17)
Since each channel of SMC-CL filter is a lattice
type predictor, the forward and backward predic-
tion errors of the filter can be rewritten as

M) =Y (i +td) +§c G.1) Y(i+1d—j)
=1, 2. (4.18)

PP =Y (i td= nH R dFnt 1,0 YaHid+1-)
i1, 2 (4.19)

where { ¢ (j,t)} and {d? (j,t)} are the parameters
of the forward and backward linear predictors of
order n. Also the PARCOR coffficients of (t),
B8 (t) are equivalent to the n-th parameters of
order n.®® That is, of"' (t)=c?'(n+1t) and &'
(t)= d7*’ (n+1,t). Therefore {cP'(jt)}, {47 (j,
t)} can be calculated by the well-known Levinson

recursions together with the cyclic property ®®
cHiint 1L, t)=ael? (1) (4.20)
AP (n+1, t)=8%"(t) (4. 21)

)dr (n+H1-j, t)
(4.22)

G, t)=c?G, t)tal
j=1’ ...... s n

A G, 0 =din G, O+8TT (Ot 1=, 1)

y=1, - , n (4.23)

Now we iterate the above recursions from n=1 up
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to n=2p-+1, and compare {ci*'(t)} with (4.1),
then the parameters of ARMA process y(t) are
obtained by

(‘20+l (21 R

f_\ (
71‘1 b7 “&’m
by,
4()57 z;ﬁ‘ [T

/tl

s;m N
\ \ \\
2
(8] L 7 e
"ﬂ“ty e e
7% 7y 2 e ‘)

Fig.1 SMC-CL f{ilter for ARMA modeling.

Table 3 SMC-CL filter algorithm for ARMA

modeling,

INITIALIZE :
A= =B%—
B(—D=03(—

D=n3(=D=n¥"(=1=0

1) =small positive value

Fort=0 to T

INPUT ESTIMATION PART .
ey =y(t), e¥ )=y t—M+1)
os? @,0(t)=cos 28%, (t)=1
For n=0 to min{2p, 2t{—1
AL =23(t—D+es(t)pr(t—1)/
cos? 8...(t)
-2)+970—1*%
cos?8,a(t)
TP ) ==t {t) /i (—1)
ey () =ep()+y ™) a2 t—1)
cos® 81, aer(t) =cos?B.,a(t) —nF(1—1) %/
T3t —1)

r2t—1)=1%(t
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eI M= )y (Mgt —1)
K;‘(U=A;‘(t)~u () (t—1)/
0s?8% (1)

H‘(’t—l)—r?(h D—n(i—12
cos?@¥ (1)
cos® GF i (t) =cos* @Y, (1) — T (t—1)%/
ri(t—1)

e(t) =€ (1)

SMC-CL FILTER PART:

75 (1) =&() eS(t)=ns (t)w(t)
n¥(t) é‘(t~m+l) et (t)=n¥")

=yt M+1)
)=l t—1D+eé (1) —é(t— :

costB,, (1) =cos?8%,(1)=1

For n=0 to min {2p, 2t}

FIRST CHANNEL :
art{ty =52t —1)
) =¥ (- 1)
P t)=7r2(t—1)
SECOND CHANNEL :
AP =AFt— 1) +ef(t)pt(t)/

cos? 8, (1)

7

or(t)=of(t—1)+eM1)?/cos® 8y n(1)
ai* (t)=7"(1)

B () =—af{)/e?(t)

et (th=eS(t)—elt)

z (

PO =93 FA (1) e3 (1)
)-cos 80 a(t)—nT(1)2/2T(t)
e t)=ed (t)—E(t—M+1)
7/*"“( Y=t (1) + A7 (1) €T(t)
A =oF0)— e ()T (1) /cos*O T alt)
Uz() o3 (1) —e¥™(t)? /cos® 8% (1)
cos? 8% noy (1) =cos? 8y n(t) — 9T (+) /(1)

5. Simulation results

The theoretical analysis of the convergence
characteristics and the numerical properties of lat-
tice type algorithms is a difficult problem because

the relations between the filter variables are highly

nonlinear to reduce the computational burdens,
Therefore, as an alternative, computer simulations
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are performed to show the effectiveness of the pro-
posed algorithm, Two examples are taken.one is
an ARMA process and the other is a sinusoidal data
case.

Example 1 : ARMA parameter estimation

This example is taken to show the convergence
of SMC-CL filter. The signal data are generated
by ARMA(2, 2) model represented by

y(t)=—ay(t—1) —ay t—2)+e(t) +be(t—1)
+be(t—2)
=15y (t—1)—0.7y{t —=2)+e(t)+0. 5e
(t—1)—0.3e(1t—2)

where {e(t)} is white noise sequence with~N(0.1)
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Fig.2 ARMA(2.2) parameters of example 1.
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Fig.3 Power spectrum of example 2(t=350).
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The simulations are performed with p=2, and
results are in Fig 2. The dotted lines indicate the
true ARMA parameters and the solid lines are the
corresponding estimates for each parameter averaged
over ten different sample paths. The estimates of
ARMA parameters converge to the true values well,
The convergence rate of MA parameters is slower
than that of AR parameters due to the hypothetical
input estimation,

Example 2: Adaptive spectral estimation

This example is taken to show the tracking
performance of SMC-CL filter, In this example, the
following time varying sinusoidal signal is used.

yvit)= sin (0, 3xt) t <200
sin (034 (1= 200) 71000) = t)

200=1 <300

sin(0. 4m1) 1 =300

The simulation is done with p=8 and M=48,
and the result is depicted in Fig.3. An exact spectrum
of the time varing signal is achieved after the win-
dow slides up to the Mth data from the point of
signal change. That is, SMC-CL filter tracks well
to the time varying parameters of the process.

6. Conclusion

The sliding window covariance circular lattice
(SMC-CL) filter for ARMA modeling is presented.
First SMC-CL filter is derived for the general case
by the geometric approach, Since SMC-CL filter
is a covariance type filter, it works well in case of
relatively short data record. Also it can track to
the time varying parameters by virtue of its sliding
windowing action on data, As CL filters including
SMC-CL filter contain only the scalar operations,
SMC-CL filter is efficient in the computational
aspects,

To use SMC-CL filter in ARMA modeling,
ARMA process is converted to two variate AR
process, and then SMC-CL filter is applied to it.
The joint process estimation algorithm is also deriv-
ed to estimate e(t) which is not available at time
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t. Due to the whiteness of e(t), SMC-CL ARMA
modeling algorithm becomes simpler. The parame-
ters of ARMA process can be obtained from the
forward and backward PARCOR coefficients of the
second channel of SMC-CL filter by the Levinson
recursions,

SMC-CL filter may be used in fields of adap-
tive signal processing, system identification and
spectral estimation, The quantitative analysis of
stability and convergence characteristics of SMC-
CL filter still remains a future work.

(2 A7 gFasticte) 7w xPez o
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