• Title/Summary/Keyword: ARIMA Model

Search Result 369, Processing Time 0.024 seconds

A Study on the Prediction of Power Demand for Electric Vehicles Using Exponential Smoothing Techniques (Exponential Smoothing기법을 이용한 전기자동차 전력 수요량 예측에 관한 연구)

  • Lee, Byung-Hyun;Jung, Se-Jin;Kim, Byung-Sik
    • Journal of Korean Society of Disaster and Security
    • /
    • v.14 no.2
    • /
    • pp.35-42
    • /
    • 2021
  • In order to produce electric vehicle demand forecasting information, which is an important element of the plan to expand charging facilities for electric vehicles, a model for predicting electric vehicle demand was proposed using Exponential Smoothing. In order to establish input data for the model, the monthly power demand of cities and counties was applied as independent variables, monthly electric vehicle charging stations, monthly electric vehicle charging stations, and monthly electric vehicle registration data. To verify the accuracy of the electric vehicle power demand prediction model, we compare the results of the statistical methods Exponential Smoothing (ETS) and ARIMA models with error rates of 12% and 21%, confirming that the ETS presented in this paper is 9% more accurate as electric vehicle power demand prediction models. It is expected that it will be used in terms of operation and management from planning to install charging stations for electric vehicles using this model in the future.

Construction of a Short-term Time-series Prediction Model for Analysis of Return Flow of Residential Water (생활용수 회귀수량의 분석을 위한 시계열 단기 예측모형 구축)

  • Lee, Seungyeon;Lee, Sangeun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.763-774
    • /
    • 2023
  • The water availability in a river is related to the return flow of residential water. However it is still difficult to determine the exact return flow. In this study, the residential water-cycle system is defined as a process consisting of water inflow, water transfer and water outflow. The study area is Hampyeong-gun, Jeollanam-do, and is set as a single inflow to a single outflow through the water-cycle system after classification of complete and incomplete measurement points. The time-series prediction models(ARIMA model and TFM) are established with daily inflow and outflow data for 6 years. Inflow and outflow are predicted by dividing into training and test periods. As a result, both models show the feasibility of short-term prediction by deriving stable residuals and securing statistical significance, implementing the preliminary form of the water-cycle system. As a further study, it is suggested to predict the actual return flow of the target basin and efficient water operation by adding input factors and selecting the optimal model.

Forecasting Total Marine Production through Multiple Time Series Model

  • Cho, Yong-Jun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.1
    • /
    • pp.63-76
    • /
    • 2006
  • Marine production forecasting in fisheries is a crucial factor for managing and maintaining fishery resources. Thus this paper aims to generate a forecasting model of total marine production. The most generally method of time series model is to generate the most optimal single forecasting model. But the method could induce a different forecasting results when it does not properly infer a model To overcome the defect, I am trying to propose a single forecasting through multiple time series model. In other word, by comparing and integrating the output resulted from ARIMA and VAR model (which are typical method in a forecasting methodology), I tried to draw a forecasting. It is expected to produce more stable and delicate forecasting prospect than a single model. Through this, I generated 3 models on a yearly and monthly data basis and then here I present a forecasting from 2006 to 2010 through comparing and integrating 3 models. In conclusion, marine production is expected to show a decreasing tendency for the coming years.

  • PDF

Estiamtion of Time Series Model on Forest Fire Occurrences and Burned Area from 1970 to 2005 (1970-2005년 동안의 산불 발생건수 및 연소면적에 대한 시계열모형 추정)

  • Lee, Byungdoo;Chung, Joosang
    • Journal of Korean Society of Forest Science
    • /
    • v.95 no.6
    • /
    • pp.643-648
    • /
    • 2006
  • It is important to understand the patterns of forest fire in terms of effective prevention and suppression activities. In this study, the monthly forest fire occurrences and their burned areas were investigated to enhance the understanding of the patterns of forest fire in Korea. The statistics of forest fires in Korea, 1970 through 2005, built by Korea Forest Service was analyzed by using time series analysis technique to fit ARIMA models proposed by Box-Jenkins. The monthly differences in forest fire characteristics were clearly distinguished, with 59% of total forest fire occurrences and 72% of total burned area being in March and April. ARIMA(1, 0, 1) was the best fitted model to both the fire accurrences and the burned area time series. The fire time series have a strong relation to the fire occurrences and the burned area of 1 month and 12 months before.

A Study on the AI Model for Prediction of Demand for Cold Chain Distribution of Drugs (의약품 콜드체인 유통 수요 예측을 위한 AI 모델에 관한 연구)

  • Hee-young Kim;Gi-hwan Ryu;Jin Cai ;Hyeon-kon Son
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.763-768
    • /
    • 2023
  • In this paper, the existing statistical method (ARIMA) and machine learning method (Informer) were developed and compared to predict the distribution volume of pharmaceuticals. It was found that a machine learning-based model is advantageous for daily data prediction, and it is effective to use ARIMA for monthly prediction and switch to Informer as the data increases. The prediction error rate (RMSE) was reduced by 26.6% compared to the previous method, and the prediction accuracy was improved by 13%, resulting in a result of 86.2%. Through this thesis, we find that there is an advantage of obtaining the best results by ensembleing statistical methods and machine learning methods. In addition, machine learning-based AI models can derive the best results through deep learning operations even in irregular situations, and after commercialization, performance is expected to improve as the amount of data increases.

Estimation Model of Wind speed Based on Time series Analysis (시계열 자료 분석기법에 의한 풍속 예측 연구)

  • Kim, Keon-Hoon;Jung, Young-Seok;Ju, Young-Chul
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.288-293
    • /
    • 2008
  • A predictive model of wind speed in the wind farm has very important meanings. This paper presents an estimation model of wind speed based on time series analysis using the observed wind data at Hangyeong Wind Farm in Jeju island, and verification of the predictive model. In case of Hangyeong Wind Farm and Haengwon Wind Farm, The ARIMA(Autoregressive Integrated Moving Average) predictive model was appropriate, and the wind speed estimation model was developed by means of parametric estimation using Maximum likelihood Estimation.

  • PDF

Effects of maximum speed limit on Gyeongbu Expressway (경부고속도로 최고제한속도 상향에 따른 교통사고 영향 분석)

  • Song, Yinhua;Seong, Byeongchan
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.5
    • /
    • pp.719-731
    • /
    • 2017
  • In September 2010, the Korea government increased the speed limit on the Gyeongbu Expressway (Cheonan IC.-Yangjae IC) from 100 to 110 km per hour. This paper considers ARIMA-Intervention model to analyze the effects of the speed limit change on the incidences of traffic accidents and injuries. In addition, in order to investigate the effects more clearly, we also analyze the difference between the two lines of Cheonan IC-Yangjae IC and Busan IC-Cheonan IC. As a result, we observe that the numbers of accidents and injuries have increased after the speed limit change. The increases are strikingly distinctive in comparison to other lines (Busan IC-Cheonan IC) where there have been no changes in the maximum speed limit.

Forecast of Korea Defense Expenditures based on Time Series Models

  • Park, Kyung Ok;Jung, Hye-Young
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.1
    • /
    • pp.31-40
    • /
    • 2015
  • This study proposes a mathematical model that can forecast national defense expenditures. The ongoing European debt crisis weighs heavily on markets; consequently, government spending in many countries will be constrained. However, a forecasting model to predict military spending is acutely needed for South Korea because security threats still exist and the estimation of military spending at a reasonable level is closely related to economic growth. This study establishes two models: an Auto-Regressive Moving Average model (ARIMA) based on past military expenditures and Transfer Function model with the Gross Domestic Product (GDP), exchange rate and consumer price index as input time series. The proposed models use defense spending data as of 2012 to create defense expenditure forecasts up to 2025.

Forecasting LNG Freight rate with Artificial Neural Networks

  • Lim, Sangseop;Ahn, Young-Joong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.7
    • /
    • pp.187-194
    • /
    • 2022
  • LNG is known as the transitional energy source for the future eco-friendly, attracting enormous market attention due to global eco-friendly regulations, Covid-19 Pandemic, Russia-Ukraine War. In addition, since new LNG suppliers such as the U.S. and Australia are also diversifying, the LNG spot market is expected to grow. On the other hand, research on the LNG transportation market has been marginalized. Therefore, this study attempted to predict short-term LNG 160K spot rates and compared the prediction performance between artificial neural networks and the ARIMA model. As a result of this paper, while it was difficult to determine the superiority and superiority of ARIMA and artificial neural networks, considering the relative free of ANN's contraints, we confirmed the feasibility of ANN in LNG 160K spot rate prediction. This study has academic significance as the first attempt to apply an artificial neural network to forecasting LNG 160K spot rates and are expected to contribute significantly in practice in that they can improve the quality of short-term investment decisions by market participants by increasing the accuracy of short-term prediction.

Assessing the Competitiveness and Complementarity of the Agricultural Products Trade between Korea and CPTPP Countries

  • Meng-wen Chen;Suk-jae Park;Quan-zheng Zhu
    • Journal of Korea Trade
    • /
    • v.27 no.3
    • /
    • pp.147-160
    • /
    • 2023
  • Purpose - This paper aims to investigate the competitiveness and complementarity of the agricultural products trade between Korea and Comprehensive and Progressive Agreement for Trans-Pacific Partnership (CPTPP) countries. The study evaluates the opportunities and challenges that Korea's agricultural sector faces after joining the CPTPP, and suggests strategies to deepen cooperation and expand Korea's agricultural products trade. Design/methodology - To achieve these objectives, we analyze the trade competition and cooperation relationship between Korea and CPTPP countries in the agricultural products trade. This study uses data from Chapters HS1-24 in UN Comtrade from 2012 to 2022, and applies the indices of revealed comparative advantage, export similarity, and trade complementarity to examine the trade dynamics. Furthermore, we use an Autoregressive Integrated Moving Average (ARIMA) model to predict the agricultural products trade complementarity index between Korea and CPTPP countries from 2022 to 2031. Findings - The findings of our analysis reveal that Korea's agricultural products trade competitiveness is weak compared to that of CPTPP countries, and Korea's agricultural products are at a competitive disadvantage. On the whole, the similarity index of agricultural products trade exports between Korea and CPTPP countries is low, the structure of agricultural products export is quite different, and trade competition is relatively moderate. The trade complementarity index between Korea and CPTPP countries is generally high, with strong complementarity and a large space for cooperation and development. The ARIMA model shows that in the next ten years, although the agricultural products trade complementarity index fluctuates, but is generally high, there will still be a complementarity advantage in the future. Originality/value - This study is the first attempt to investigate the competitiveness and complementarity of the agricultural products trade between Korea and CPTPP countries. We also introduce an ARIMA model to forecast and analyze the future agricultural products trade complementarity index. Our study provides new perspectives and solutions for the future development of Korea's agricultural products trade after joining the CPTPP.