• 제목/요약/키워드: ARIMA 추세

검색결과 39건 처리시간 0.036초

ARIMA 추세의 비관측요인 모형과 미국 GDP에 대한 예측력 (UC Model with ARIMA Trend and Forecasting U.S. GDP)

  • 이영수
    • 국제지역연구
    • /
    • 제21권4호
    • /
    • pp.159-172
    • /
    • 2017
  • 비관측요인(unobserved-component)모형을 이용한 GDP의 추세-순환요인 분해에서, 통상적으로 추세는 확률보행 과정을 갖는 것으로 가정된다. 본 연구는 추세를 ARIMA 과정으로 표현하는 경우, GDP 변동에서 갖는 추세요인의 의미가 어떻게 달라지는가를 살펴보고, GDP에 대한 예측력이 개선될 수 있는가의 여부를 미국의 데이터를 이용하여 실증적으로 분석하였다. 모형은 GDP만의 단일변수모형과 물가를 포함하는 2변수모형의 두 가지를 고려하여 설정하였으며, 모형 추정은 비관측요인모형을 상태-공간모형으로 전환한 후 칼만 필터(Kalman filter)를 이용한 최대우도추정법을 사용하였다. GDP에 대한 예측은 축차적 추정(recursive estimation)을 이용한 동적 표본외예측(dynamic out-of-sample) 방식을 사용하였으며, 예측력 비교결과에 대한 검정은 Diebold-Mariano 검정을 이용하였다. 분석 결과는 첫째, 모형의 추정결과에서 ARIMA 추세의 계수가 통계적으로 유의적인 값을 가지며, 둘째, ARIMA 추세 모형이 확률보행 추세 모형보다 GDP 변동의 분산 및 자기 상관성(autocorrelation)을 보다 잘 설명하며, 셋째, 예측력에서 단일변수보다는 2변수모형의 예측력이 그리고 확률보행 추세보다는 ARIMA 추세를 갖는 모형의 예측력이 통계적으로 유의하게 높은 것으로 나타났다. 이러한 결과들은 GDP 추세-순환 요인 분해에서 추세를 ARIMA 과정으로 표현하는 것이 보다 타당하다는 것을 시사하고 있다.

ARIMA AR(1) 모형을 이용한 소프트웨어 미래 고장 시간 예측에 관한 연구 (The Study for Software Future Forecasting Failure Time Using ARIMA AR(1))

  • 김희철;신현철
    • 융합보안논문지
    • /
    • 제8권2호
    • /
    • pp.35-40
    • /
    • 2008
  • 소트프웨어 고장 시간은 테스팅 시간과 관계없이 일정하거나, 단조 증가 혹은 단조 감소 추세를 가지고 있다. 이러한 소프트웨어 신뢰모형들을 분석하기 위한 자료척도로 자료에 대한 추세 검정이 개발되어 있다. 추세 분석에는 산술평균 검정과 라플라스 추세 검정 등이 있다. 추세분석들은 전체적인 자료의 개요의 정보만 제공한다. 본 논문에서는 고장시간을 측정하다가 시간절단이 될 경우에 미래의 고장 시간 예측에 관하여 연구되었다. 고장 시간 예측에 사용된 고장시간자료는 소프트웨어 고장 시간 분포에 널리 사용되는 와이블 분포에서 형상모수가 1이고 척도모수가 0.5를 가진 난수를 발생된 모의 자료를 이용 하였다. 이 자료를 이용하여 시계열 분석에 이용되는 ARIMA 모형 중에서 AR(1) 모형과 모의실험을 통한 예측 방법을 제안하였다. 이 방법에서 ARIMA 모형을 이용한 예측방법이 효율적임을 입증 하였다.

  • PDF

머신러닝 기반 시계열 예측 시스템 비교 및 최적 예측 시스템 구현 (Comparison and Implementation of Optimal Time Series Prediction Systems Using Machine Learning)

  • 한용희;고방원
    • 한국정보전자통신기술학회논문지
    • /
    • 제17권4호
    • /
    • pp.183-189
    • /
    • 2024
  • 본 연구는 시계열 데이터를 효과적으로 예측하기 위해 데이터를 Seasonal-Trend Decomposition on Loess 을 통해 추세, 계절성, 잔차 성분으로 분해한 후 추세 성분에는 ARIMA, 계절성 성분에는 Fourier Series Regression, 잔차 성분에는 XGBoost를 적용하는 하이브리드 예측 모델을 제안하였다. 또한, ARIMA, XGBoost, LSTM, EMD-ARIMA, CEEMDAN-LSTM 모델을 포함한 성능 비교 실험을 수행하여 각 모델의 예측 성능을 평가하였다. 실험 결과, 제안된 하이브리드 모델은 MAPE, MAAPE, RMSE 지표에서 각각 3.8%, 3.5%, 0.35로 가장 좋은 평가 지표 값을 보이며 기존의 단일 모델보다 우수한 성능을 보였다.

승법계절 ARIMA 모형에 의한 부산항 컨테이너 물동량 추정과 예측 (Forecasting the Container Throughput of the Busan Port using a Seasonal Multiplicative ARIMA Model)

  • 이재득
    • 한국항만경제학회지
    • /
    • 제29권3호
    • /
    • pp.1-23
    • /
    • 2013
  • 본 연구는 1992년부터 2011년까지 월별자료를 사용하여 여러 가지 시계열 추정모델과 승법 계절 ARIMA 모형을 설정하여 부산항의 컨테이너 물동량을 추정하고 예측하였다. 여러 가지 모델로 추정한 결과 부산항의 컨테이너 물동량과 물동량 변동 모두 계절을 승법한 ARIMA 모델 $(1,0,1){\times}(1,0,1)_{12}$로 추정하였을 때, 추정결과와 Akaike information, Schwarz, Hannan-Quin 기준 등으로 보아, 가장 좋은 ARIMA 추정과 예측 모형으로 나타났다. 그리하여 부산항 물동량 추정의 최적모형인 ARIMA $(1,0,1){\times}(1,0,1)_{12}$ 모형에 의해 향후 8년간 96개월에 대한 부산항 물동량 미래 예측치(2013-2020년)를 월별로 추정하여 예측한 결과 2013년부터 부산의 물동량은 연도별로 조금씩 지속적으로 증가하는 추세를 보일 것으로 나타났다. ARIMA $(1,0,1){\times}(1,0,1)_{12}$ 모형에 의한 부산항의 컨테이너 물동량의 연도별 예측량은 2013년 1천 891만 TEU, 2014년 2천 34만 TEU, 2015년 2천 188만 TEU, 2016년 2천 353만 TEU, 2017년 2천 531만 TEU, 2018년 2천 722만 TEU 그리고 2020년 3천 148만 TEU 등으로 나타났다.

한국형 X11ARIMA 프로시져에 관한 연구 (X11ARIMA Procedure)

  • 박유성;최현희
    • 응용통계연구
    • /
    • 제11권2호
    • /
    • pp.335-350
    • /
    • 1998
  • X11ARIMA는 1965년 미국 센서스국에서 개발된 X11분석 방법에 기초한 시계열 분석방법으로 Dagum(1975)에 의해 개발되었다. 이 기법은 Dagum(1988)에 의하여 북미지역의 174개의 경제지수를 바탕으로 일부 기본모형이 수정·보완되어 오늘날에 이르고 있다. 최근에는 회귀 모형과 ARIMA모형을 동시에 고려하여 특이치와 추세 변환효과(outlier arid Trend-change effects), 계절변동(seasonal effect), 그리고 달력효과(calendal effect) 등을 추정한 William 등(1995)과 Chen과 Findley(1995)의 X12ARIMA분석 방법이 소개되었다. 그러나 위의 모든 기법들은 주로 북미지역의 경제지수를 기초로 하고 있다. 본 논문에서는 우리나라의 산업중분류에서 산출되는 102개(생산(27), 출하(27), 재고(27), 가동률(21))의 지수에 대한 우리나라의 표준 ARIMA모형을 제시하고, 우리나라에 적합한 이동평균항수를 제공하고자 한다. 그리고 우리나라의 설, 추석 등의 명절효과를 태양력으로 전환함과 동시에, 최근에 논의되고 있는 X12ARIMA에서 사용되는 회귀모형과 ARIMA모형을 동시에 고려하는 명절효과를 도출하고자 한다.

  • PDF

ARIMA 모델을 이용한 수막재배지역 지하수위 시계열 분석 및 미래추세 예측 (Time-series Analysis and Prediction of Future Trends of Groundwater Level in Water Curtain Cultivation Areas Using the ARIMA Model)

  • 백미경;김상민
    • 한국농공학회논문집
    • /
    • 제65권2호
    • /
    • pp.1-11
    • /
    • 2023
  • This study analyzed the impact of greenhouse cultivation area and groundwater level changes due to the water curtain cultivation in the greenhouse complexes. The groundwater observation data in the Miryang study area were used and classified into greenhouse and field cultivation areas to compare the groundwater impact of water curtain cultivation in the greenhouse complex. We identified the characteristics of the groundwater time series data by the terrain of the study area and selected the optimal model through time series analysis. We analyzed the time series data for each terrain's two representative groundwater observation wells. The Seasonal ARIMA model was chosen as the optimal model for riverside well, and for plain and mountain well, the ARIMA model and Seasonal ARIMA model were selected as the optimal model. A suitable prediction model is not limited to one model due to a change in a groundwater level fluctuation pattern caused by a surrounding environment change but may change over time. Therefore, it is necessary to periodically check and revise the optimal model rather than continuously applying one selected ARIMA model. Groundwater forecasting results through time series analysis can be used for sustainable groundwater resource management.

우리나라 경제통계의 계절조정 현황과 주요 쟁점 (Seasonal adjustment in Korean economic statistics and major issues)

  • 이긍희
    • 응용통계연구
    • /
    • 제29권1호
    • /
    • pp.205-220
    • /
    • 2016
  • 경제통계에서 기조적 변동인 추세변동과 순환변동을 살펴보려면 경제통계에서 달력변동을 포함한 계절변동을 적절히 제거하는 계절조정이 필요하다. 계절조정방법으로는 전년동기대비 증감률과 같이 간편한 방식이 있지만 통계작성기관에서는 이동평균 또는 시계열모형을 기반으로 한 X-12-ARIMA 또는 TRAMO-SEATS를 이용하여 계절조정계열을 작성한다. 통계청과 한국은행은 X-12-ARIMA 또는 X-13ARIMA-SEATS에 우리나라 고유의 명절, 공휴일 등을 추가로 보정한 계절조정방법을 만들고 이를 이용하여 우리나라 주요 경제통계의 계절조정계열을 작성, 공표하고 있다. 본 논문에서는 그 동안의 연구를 바탕으로 계절조정의 기본 원리와 우리나라의 계절조정 현황을 정리하고, 월별 산업생산지수(제조업)와 취업자의 계절조정을 통해 계절조정의 주요 쟁점을 정리하였다.

해상운송의 물동량 예측과 항만물류정책 -승법 계절 ARIMA 모형을 이용하여- (Forecasting the Trading Volumes of Marine Transport and Ports Logistics Policy -Using Multiplicative Seasonal ARIMA Model-)

  • 김창범
    • 한국항만경제학회지
    • /
    • 제23권1호
    • /
    • pp.149-162
    • /
    • 2007
  • 본고는 2012년까지의 해상물동량을 예측하고 항만물류정책적 방안을 제시하는데 목적을 두었다. ARIMA 모형을 통한 분석을 위해서 1차적으로 모형을 식별하였다. 자기상관도표를 통해 물동량의 자기상관함수값이 대단히 느린 속도로 0에 접근하여 안정적이지 못한 것으로 나타났으나, 자기상관계수가 1차차분 후 시차1 이후 급격한 감소를 보임에 따라 AR(1) 과정을 갖는다는 것을 알 수 있었다. 또한 자료들이 강한 계절성을 갖는 것으로 나타남에 따라 식별단계를 거쳐 승법계절 ARIMA모형인 ARIMA(1,1,1)(1,0,1)s 모형을 도입하였다. 다음 단계로 2007년부터 2012년까지의 사전적 예측치를 살펴보았다. 그 결과 2007년 6억9,631만톤, 2008년 7억2,180만톤, 2009년 7억4,807만톤, 2010년 7억7,520만톤, 2011년 8억320만톤, 2012년 8억3,212만톤으로 매우 느리게 증가하였다. 2006년 대비 증가율로 보면 2007년 1.42%, 2009년 8.96%, 2012년 21.21%로 나타났다. 구체적으로 입하량의 경우는 2007년 0.86%에서 2012년 16.1%로 증가하며, 출하량의 경우는 2007년 2.76%에서 2012년 33.2%로 증가함을 알 수 있었다. 그리고 항만물동량 증가추세 둔화현상의 극복과 항만의 로컬 화물 창출 및 부가가치 창출 기능을 위해서 제조업의 공동화 억제, 환적화물의 지속적이고 적극적인 유치, 항만배후물류단지의 조기 개발과 다국적 기업의 유치, 한 중 물류협력 강화, 복합운송체계의 구축을 제시하였다.

  • PDF

계절 ARIMA모형을 이용한 과거 유입량 분석기간 적용성 연구 (The past Inflow data Period Validit Analysis Using Seasonal ARIMA Model)

  • 김건순;이충대
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2010년도 학술발표회
    • /
    • pp.1410-1414
    • /
    • 2010
  • 최근 들어 가뭄과 국지성 호우 등의 기상이변이 지속적으로 발생하고 있으며, 이는 국민 삶의 발전과 향상에 밀접한 관계가 있는 것으로 전세계적으로 이에 대한 관심이 증가하고 있는 추세이다. 특히 댐의 효율적 관리와 안정적인 운영은 홍수피해 방지, 안정적인 용수공급과 같은 국민 생활과 밀접한 관계를 가지고 있어 수자원의 효율적인 운영과 이용은 장기적인 관점을 통하여 수립해야 한다. 이와 같이 댐 유입량의 예측은 유출모형의 목적 중 중요한 부분으로 확정론적 모형이 시 혹은 일유량과 같은 매우 짧은 시간의 유출을 예측하는데 주로 사용되지만 이는 매개변수의 추정이 불가능하거나 실제유역에서의 측정이 불가능 할 경우에는 모형적용에 한계가 있다. 이에 반해 추계학적 모형에 의한 유출예측은 장기간의 유출을 과거자료의 통계학적 특성변수를 매개변수로 하여 예측하는 방법으로 모형의 적용에 필요한 매개변수가 적어 그 적용성이 간편한 장점이 있다. 본 연구에서는 계절형 ARIMA모형을 적용하여 과거자료의 적용범위, 매개변수의 산정, 적합성 판정에 대하여 판단하고, 이 모형이 월유입량의 예측에 적합한지를 검토하였다.

  • PDF