• 제목/요약/키워드: ARIMA 분석

검색결과 231건 처리시간 0.028초

ARIMA를 이용한 항공기 수리부속의 수요 예측 (A Demand Forecasting for Aircraft Spare Parts using ARMIA)

  • 박영진;전건욱
    • 한국국방경영분석학회지
    • /
    • 제34권2호
    • /
    • pp.79-101
    • /
    • 2008
  • 신형/장기 운영 무기체계 수리부속의 불균형적 수요발생에 따른 항공기 불가동을 해소하기 위한 수요예측기법 개선의 필요성이 대두되고 있다. 항공기 수리부품들은 고단가이고, 청구에 소요되는 기간이 길어 사전에 예측하지 못한다면 작전지원에 문제가 발생하게 된다. 신뢰성 있는 수요 예측은 과보유로 인한 재고비용을 줄일 수 있으며, 수요를 예측하기 위한 방법은 회귀분석, 단/다변량 시 계열분석, 데이터 마이닝 기법 등이 있다. 항공기 부품의 수요 예측은 그 부품의 수가 8만 가지 이상이며 각 부품간의 관계를 분석하기에 어려움이 있어 시간에 종속적인 단변량 시계열 분석을 통해 수요예측을 실시하였다. 본 연구에서는 이러한 문제점을 해결하기 위하여 첫째, 자료를 기존 AMMIS 체계에서 고장 자료를 실수요로 가정하여 수집하였다. 고장이나 주기 검사, 시한성 기술지시 등으로 부품을 장 탈착하게 되면 정비부서에서 이를 전산프로그램인 AMMIS에 입력하도록 하고 있다. 따라서 실제 정비부서에서 부품을 사용한 현황을 실수요라고 인정할 수 있다. 둘째, 1999년 1월부터 2007년 2월까지의 월별 자료(98개)를 수집하였다. 자료의 수가 충분하므로 예측 정확성 향상을 위하여 ARIMA기법에 적용이 가능하다. 고장빈도가 높은 부품 50여개를 추출하여 Box-Jenkins의 ARIMA기법을 적용하여 예측을 실시하였다 실시 결과 적합한 모형식을 도출하였으며, 현용기법보다 예측 정확성이 높다는 결론을 얻었다.

시계열 분석을 이용한 흙막이 벽체 변형 예측 (Time Series Analysis for Predicting Deformation of Earth Retaining Walls)

  • 서승환;정문경
    • 한국지반공학회논문집
    • /
    • 제40권2호
    • /
    • pp.65-79
    • /
    • 2024
  • 본 연구는 전통적인 통계기반 ARIMA(Auto-Regressive Integrated Moving Average) 모델과 딥러닝 기반 LSTM(Long Short-Term Memory) 모델을 활용하여 굴착 현장의 지중경사계 데이터를 통한 흙막이 벽체 변형을 예측하고, 두 모델의 예측 성능을 비교 분석하였다. ARIMA 모델은 시간의 흐름에 따른 시계열 데이터의 선형적 패턴을 분석하는 데 강점을 보이는 반면, LSTM은 데이터의 복잡한 비선형 패턴과 장기 의존성을 포착하는 데 우수한 능력을 보여주었다. 본 연구는 흙막이 벽체 변형 예측을 위해 지중경사계 계측 데이터에 대한 전처리, 다양한 시계열 데이터 길이 및 입력변수 조건 등에 따른 성능 평가를 포함하였으며, LSTM 모델이 ARIMA 모델에 비해 통계적으로 유의미한 예측 성능 향상을 확인하였다. 본 연구의 결과는 굴착 현장에서의 지중경사계 데이터를 활용한 흙막이 벽체의 안정성 평가에 LSTM 모델을 효과적으로 적용할 수 있음을 보여준다. 또한 이를 바탕으로 향후 굴착 현장 전체에 대한 안전모니터링 시스템 구축과 시계열 예측 모델 발전에 기여할 것으로 기대된다.

특허 키워드 시계열 분석을 통한 부상 기술 예측 (Time Series Analysis of Patent Keywords for Forecasting Emerging Technology)

  • 김종찬;이준혁;김갑조;박상성;장동식
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제3권9호
    • /
    • pp.355-360
    • /
    • 2014
  • 오늘날 국가와 기업의 연구 개발 투자 및 경영 정책 전략 수립에서 미래 부상 기술 예측은 매우 중요한 역할을 한다. 기술 예측을 위한 다양한 방법들이 사용되고 있으며 특허를 이용한 기술 예측 또한 활발히 진행되고 있다. 특허를 이용한 기술 예측에는 전문가들의 평가와 견해를 통한 정성적인 방법이 주로 사용되어 왔다. 정성적인 방법은 분석 결과의 객관성을 보장하지 못하고 분석에 많은 비용 및 시간이 요구된다. 이런 문제점을 보완하기 위해 최근에는 텍스트 마이닝을 이용한 특허 데이터의 정량적인 분석이 이루어지고 있다. 텍스트 마이닝 기법을 적용함으로써 특허 문서의 통계적 분석이 가능하다. 본 논문에서는 텍스트 마이닝과 ARIMA 분석을 이용한 기술 예측 방법을 제안한다.

해상운송의 물동량 예측과 항만물류정책 -승법 계절 ARIMA 모형을 이용하여- (Forecasting the Trading Volumes of Marine Transport and Ports Logistics Policy -Using Multiplicative Seasonal ARIMA Model-)

  • 김창범
    • 한국항만경제학회지
    • /
    • 제23권1호
    • /
    • pp.149-162
    • /
    • 2007
  • 본고는 2012년까지의 해상물동량을 예측하고 항만물류정책적 방안을 제시하는데 목적을 두었다. ARIMA 모형을 통한 분석을 위해서 1차적으로 모형을 식별하였다. 자기상관도표를 통해 물동량의 자기상관함수값이 대단히 느린 속도로 0에 접근하여 안정적이지 못한 것으로 나타났으나, 자기상관계수가 1차차분 후 시차1 이후 급격한 감소를 보임에 따라 AR(1) 과정을 갖는다는 것을 알 수 있었다. 또한 자료들이 강한 계절성을 갖는 것으로 나타남에 따라 식별단계를 거쳐 승법계절 ARIMA모형인 ARIMA(1,1,1)(1,0,1)s 모형을 도입하였다. 다음 단계로 2007년부터 2012년까지의 사전적 예측치를 살펴보았다. 그 결과 2007년 6억9,631만톤, 2008년 7억2,180만톤, 2009년 7억4,807만톤, 2010년 7억7,520만톤, 2011년 8억320만톤, 2012년 8억3,212만톤으로 매우 느리게 증가하였다. 2006년 대비 증가율로 보면 2007년 1.42%, 2009년 8.96%, 2012년 21.21%로 나타났다. 구체적으로 입하량의 경우는 2007년 0.86%에서 2012년 16.1%로 증가하며, 출하량의 경우는 2007년 2.76%에서 2012년 33.2%로 증가함을 알 수 있었다. 그리고 항만물동량 증가추세 둔화현상의 극복과 항만의 로컬 화물 창출 및 부가가치 창출 기능을 위해서 제조업의 공동화 억제, 환적화물의 지속적이고 적극적인 유치, 항만배후물류단지의 조기 개발과 다국적 기업의 유치, 한 중 물류협력 강화, 복합운송체계의 구축을 제시하였다.

  • PDF

수입자동차 리콜 수요패턴 분석과 ARIMA 수요 예측모형의 적용 (Analysis of the Recall Demand Pattern of Imported Cars and Application of ARIMA Demand Forecasting Model)

  • 정상천;박소현;김승철
    • 산업경영시스템학회지
    • /
    • 제43권4호
    • /
    • pp.93-106
    • /
    • 2020
  • This research explores how imported automobile companies can develop their strategies to improve the outcome of their recalls. For this, the researchers analyzed patterns of recall demand, classified recall types based on the demand patterns and examined response strategies, considering plans on how to procure parts and induce customers to visit workshops, recall execution capacity and costs. As a result, recalls are classified into four types: U-type, reverse U-type, L- type and reverse L-type. Also, as determinants of the types, the following factors are further categorized into four types and 12 sub-types of recalls: the height of maximum demand, which indicates the volatility of recall demand; the number of peaks, which are the patterns of demand variations; and the tail length of the demand curve, which indicates the speed of recalls. The classification resulted in the following: L-type, or customer-driven recall, is the most common type of recalls, taking up 25 out of the total 36 cases, followed by five U-type, four reverse L-type, and two reverse U-type cases. Prior studies show that the types of recalls are determined by factors influencing recall execution rates: severity, the number of cars to be recalled, recall execution rate, government policies, time since model launch, and recall costs, etc. As a component demand forecast model for automobile recalls, this study estimated the ARIMA model. ARIMA models were shown in three models: ARIMA (1,0,0), ARIMA (0,0,1) and ARIMA (0,0,0). These all three ARIMA models appear to be significant for all recall patterns, indicating that the ARIMA model is very valid as a predictive model for car recall patterns. Based on the classification of recall types, we drew some strategic implications for recall response according to types of recalls. The conclusion section of this research suggests the implications for several aspects: how to improve the recall outcome (execution rate), customer satisfaction, brand image, recall costs, and response to the regulatory authority.

ARIMA 모델을 이용한 수막재배지역 지하수위 시계열 분석 및 미래추세 예측 (Time-series Analysis and Prediction of Future Trends of Groundwater Level in Water Curtain Cultivation Areas Using the ARIMA Model)

  • 백미경;김상민
    • 한국농공학회논문집
    • /
    • 제65권2호
    • /
    • pp.1-11
    • /
    • 2023
  • This study analyzed the impact of greenhouse cultivation area and groundwater level changes due to the water curtain cultivation in the greenhouse complexes. The groundwater observation data in the Miryang study area were used and classified into greenhouse and field cultivation areas to compare the groundwater impact of water curtain cultivation in the greenhouse complex. We identified the characteristics of the groundwater time series data by the terrain of the study area and selected the optimal model through time series analysis. We analyzed the time series data for each terrain's two representative groundwater observation wells. The Seasonal ARIMA model was chosen as the optimal model for riverside well, and for plain and mountain well, the ARIMA model and Seasonal ARIMA model were selected as the optimal model. A suitable prediction model is not limited to one model due to a change in a groundwater level fluctuation pattern caused by a surrounding environment change but may change over time. Therefore, it is necessary to periodically check and revise the optimal model rather than continuously applying one selected ARIMA model. Groundwater forecasting results through time series analysis can be used for sustainable groundwater resource management.

계절형 ARIMA-Intervention 모형을 이용한 여행목적 별 제주 관광객 수 예측에 관한 연구 (A study on demand forecasting for Jeju-bound tourists by travel purpose using seasonal ARIMA-Intervention model)

  • 송준모
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권3호
    • /
    • pp.725-732
    • /
    • 2016
  • 본 연구에서는 제주를 방문하는 관광객 수를 여행목적 별로 분석하였다. 여행목적은 "휴양 및 관람", "레저 및 스포츠", 그리고 "회의 및 업무"를 위한 여행으로 구분되어 있으며, 2005년 1월부터 2016년 3월까지 자료를 이용하였다. 2015년 5월에 발생한 메르스 (MERS, 중동호흡기증후군) 사태의 영향을 반영하기 위하여 계절형 ARIMA-Intervention 모형을 이용한 개입분석을 수행하였다. 분석결과 메르스사태는 "레저 및 스포츠"와 "회의 및 업무"를 목적으로하는 관광객 수에 6월 한 달간 영향을 끼친 것으로 나타났으며, 이로 인하여 이 기간 동안 30%에서 40% 정도의 관광객이 감소한 것으로 추정되었다. 반면, "휴양 및 관람"에서는 메르스사태의 영향이 유의하지 않은 것으로 나타났다. 본 결과를 토대로 향후 1년의 월별 관광수요를 예측하여 보았다.

Time Series Model을 이용한 주요항만 해상교통량 예측

  • 유상록;정중식;김철승;정재용
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2013년도 추계학술대회
    • /
    • pp.133-135
    • /
    • 2013
  • 장래의 해상교통량에 대한 정확한 예측은 항로설계 및 해상교통의 안전성 평가 측면에서 중요한 요소이다. 본 연구는 신뢰성 있는 해상교통량을 추정하기 위해 시계열 모델의 지수평활법과 ARIMA 모형을 이용하여 모형의 식별 및 진단 방안을 제시하였다. 제시된 방법의 효과를 검증하기 위하여 주요항만인 부산항, 광양항, 인천항, 평택항의 해상교통량을 예측하였다. 그 결과로 부산항은 ARIMA 모형, 광양항은 Winters 승법 모형, 인천항은 단순계절 모형, 평택항은 ARIMA 모형이 더 적합한 모형으로 알 수 있었으며, 각 항만별 계절에 따라 월별 교통량의 차이를 보이는 것으로 분석되었다. 본 연구 결과는 향후 항로 및 항만설계 또는 해상교통 안전성 평가에 보다 신뢰성 있는 추정치를 제공할 수 있을 것으로 보인다.

  • PDF

부동산 매매지수와 전세지수 예측: 독립성분분석을 활용한 분석 (Forecasting Korean housing price index: application of the independent component analysis)

  • 박노진
    • 응용통계연구
    • /
    • 제30권2호
    • /
    • pp.271-280
    • /
    • 2017
  • 우리나라 뉴스에서 매일 빠지지 않는 내용은 아마도 부동산 경제에 관한 것이라고 생각된다. 많은 사람들은 부동산 가격의 변동에 관한 전문가들의 예측에 관심을 갖고 있다. 매매가격 혹은 전세가격을 예측하기위해 일반적으로 많이 사용되는 방법은 박스-젠킨스에 기반을 둔 자기회귀이동평균모형이다. 본 논문에서는 자기회귀모형과 다변량 자료분석에서 사용하는 독립성분분석을 결합하여 예측하는 방법을 시도하여 보았다. 매매가격과 전세가격을 두 개의 독립성분으로 재설정하고 독립성분들을 이용하여 예측한 후 역변환을 통해 매매가격과 전세가격을 예측하는 방법을 시도하였다. 그 결과 일반적인 자기회귀이동평균모형을 사용할 때 보다 독립성분을 활용한 예측이 실제 지수에 더 유사한 값들을 얻을 수 있음을 보였다.

궤도틀림 진전 예측을 위한 시계열 모델 적용 (Application of Time-Series Model to Forecast Track Irregularity Progress)

  • 정민철;김건우;김정훈;강윤석;공정식
    • 한국전산구조공학회논문집
    • /
    • 제25권4호
    • /
    • pp.331-338
    • /
    • 2012
  • 현재 국내에서 EM-120에 의해 검측된 틀림 데이터는 매우 불규칙적인 형태를 나타내며 데이터 분석 시 다양한 문제점을 가지고 있다. 본 연구에서는 궤도의 효율적인 유지관리를 위해 검측된 틀림데이터의 특징과 문제점을 분석하고, 이를 보완할 수 있는 효율적인 처리 기법을 개발하였으며, 정제된 데이터의 ARIMA 분석을 통해 검측데이터와 계절 변화의 상관관계 분석을 수행하였다. 또한 회귀모형, 지수평활법, ARIMA 모형 등 다양한 예측 모델의 적용을 통해 검측 데이터의 시계열 분석을 수행하고, 궤도 틀림 데이터의 예측 모델에 적합한 최적 모델 선정과 관련한 연구를 수행하였다.