• 제목/요약/키워드: ARIMA 모델

검색결과 89건 처리시간 0.026초

보정된 가솔린 수요예측치: 인공신경망적 접근 (Adjusted Gasoline Demand Forecasts: Artificial Neural Networks Approach)

  • 염창선
    • 산업경영시스템학회지
    • /
    • 제25권2호
    • /
    • pp.77-83
    • /
    • 2002
  • 본 연구에서는 가솔린 시계열 예측전문가들이 수요를 예측하고, 더 나아가 직감적으로 행하고 있는 보정과정을 자동화하기 위해 신경망을 사용한다. 가솔린 수요 예측분야에서 보정을 위해 사용되는 전형적인 판단요소는 정부 에너지 절약 정책, 에너지 산업의 파업, 공휴일 등이 있다. 주요 추세가 순환신경망에 의해 예측되고 이들 판단요소의 효과가 다층신경망에 의해 탐지되어 보정된다. 가솔린 수요에 대한 실험결과는 보정과정을 갖는 예측구조가 하나의 신경망을 사용하는 예측구조 보다 더 나은 예측력을 보였다. 그리고 본 연구에서 제시한 접근방법이 순환신경망이나 ARIMA 모델을 사용하는 것보다 더 나은 결과를 가졌다.

인공 신경망 회귀 모델을 활용한 인버터 기반 태양광 발전량 예측 알고리즘 (Inverter-Based Solar Power Prediction Algorithm Using Artificial Neural Network Regression Model)

  • 박건하;임수창;김종찬
    • 한국전자통신학회논문지
    • /
    • 제19권2호
    • /
    • pp.383-388
    • /
    • 2024
  • 본 논문은 전라남도에서 측정한 태양광 발전 데이터를 기반으로 발전량 예측값을 도출하기 위한 연구이다. 발전량 측정을 위해 인버터에서 직류, 교류, 환경데이터와 같은 다변량 변수를 측정하였고, 측정값의 안정성과 신뢰성 확보를 위한 전처리 작업을 수행하였다. 상관관계 분석은 부분자기상관함수(PACF: Partial Autocorrelation Function)을 활용하여 시계열 데이터에서 발전량과 상관성이 높은 데이터만을 예측을 위해 사용하였다. 태양광 발전량 예측을 위해 딥러닝 모델을 이용하여 발전량을 측정했고, 예측 정확도를 높이기 위해 각 다변량 변수의 상관관계 분석 결과를 이용하였다. 정제된 데이터를 활용한 학습은 기존 데이터를 그대로 사용했을 때 보다 안정되었고, 상관관계 분석 결과를 반영하여 다변량 변수 중 상관성이 높은 변수만을 활용하여 태양광 발전량 예측 알고리즘을 개선하였다.

자가-적응 소프트웨어에서 사전 문제인지를 위한 하이브리드 모델 기반 적응 시점 판단 기법 (A Timing Decision Method based on a Hybrid Model for Problem Recognition in advance in Self-adaptive Software)

  • 김혜연;설광수;백두권
    • 한국시뮬레이션학회논문지
    • /
    • 제25권3호
    • /
    • pp.65-76
    • /
    • 2016
  • 자가-적응 소프트웨어는 스스로 문제를 인지하여 인지한 문제에 대하여 소프트웨어 사이클이 멈추지 않고 해당 요구사항에 맞게 적응하는 소프트웨어이다. 본 논문에서는 임계점이 존재하는 시스템에서 발생하는 불필요한 적응 수행을 감소시키기 위하여 선행적 방식으로 임계점 이후의 상황을 예측함으로써 문제가 되는 이벤트를 사전에 처리하고자 한다. 실측치는 대부분 선형과 비선형이 모두 나타나기 때문에 하이브리드 모델을 사용하여 임계점 이후를 예측하며, 예측 기법의 사용 여부는 예측의 정확도를 기반으로 하는 적응 시점 판단 지표를 기준으로 한다. 본 논문의 기여점으로는 하이브리드 모델을 MAPE-K에 적용하여 임계점 이후 상황을 예측함으로써 실제 변화에 대한 불확실성을 감소시켰다는 점과 적응 시점 판단 지표를 기반으로 적응 시점을 판단함으로써 불필요한 적응 수행을 줄였다는 데에 있다.

미세먼지 예측 성능 개선을 위한 시공간 트랜스포머 모델의 적용 (Application of spatiotemporal transformer model to improve prediction performance of particulate matter concentration)

  • 김영광;김복주;안성만
    • 지능정보연구
    • /
    • 제28권1호
    • /
    • pp.329-352
    • /
    • 2022
  • 미세먼지는 폐나 혈관에 침투해 각종 심장 질환이나 폐암 등의 호흡기 질환을 일으키는 것으로 보고되고 있다. 지하철은 일 평균 천만 명이 이용하는 교통수단으로, 깨끗하고 쾌적한 환경조성이 중요하나 지하터널을 통과하는 지하철의 운행 특성과 터널에 갇힌 미세먼지가 열차 풍으로 인해 지하역사로 이동하는 등의 문제로 지하역사의 미세먼지 오염도는 높은 것으로 나타나고 있다. 환경부와 서울시는 지하역사 공기질 개선대책을 수립하여 다양한 미세먼지 저감 노력을 기울이고 있다. 스마트 공기질 관리 시스템은 공기질 데이터 수집 및 미세먼지 농도를 예측하여 공기질을 관리하는 시스템으로 미세먼지 농도 예측 모델이 중요한 구성 요소이다. 그동안 시계열 데이터 예측에 관한 다양한 연구가 진행되어왔지만, 지하철 역사의 미세먼지 농도 예측과 관련해서는 통계나 순환신경망 기반의 딥러닝 모델 연구에 국한되어 있다. 이에 본 연구에서는 시공간 트랜스포머를 포함한 4개의 트랜스포머 기반 모델을 제안한다. 서울시 지하철 역사의 대합실을 대상으로 한 시간 후의 미세먼지 농도 예측실험을 수행한 결과, 트랜스포머 기반 모델들의 성능이 기존의 ARIMA, LSTM, Seq2Seq 모델들에 비해 우수한 성능을 나타냄을 확인하였다. 트랜스포머 기반 모델 중에서는 시공간 트랜스포머의 성능이 가장 우수하였다. 데이터 기반의 예측을 통하여 운영되는 스마트 공기질 관리 시스템은 미세먼지 예측의 정확도가 향상될수록 더욱더 효과적이고 에너지 효율적으로 운영될 수 있다. 본 연구 결과는 스마트 공기질 관리 시스템의 효율적 운영에 기여할 수 있을 것으로 기대된다.

BST-IGT Model: Synthetic Benchmark Generation Technique Maintaining Trend of Time Series Data

  • Kim, Kyung Min;Kwak, Jong Wook
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권2호
    • /
    • pp.31-39
    • /
    • 2020
  • 본 논문에서는 시계열 데이터를 기반으로 합성 벤치마크를 생성하는 기법을 소개한다. IoT 기기에서 측정되는 많은 데이터는 시간에 따른 수치 변화를 측정하는 시계열적 특성이 있다. 하지만 긴 기간 동안 측정되는 데이터를 일반화된 시계열 데이터로 모델링하기 힘든 문제점이 존재한다. 이런 문제를 개선하기 위해 본 논문에서는 BST-IGT 모델을 소개한다. BST-IGT 모델은 전체 데이터를 시계열 모델링이 쉬운 구간으로 분리하여 생성 데이터를 템플릿으로 수집하고 이를 기반으로 특성을 공유하거나 변형되는 새로운 합성 벤치마크를 생성한다. 제안된 모델링 기법을 이용하여 신규 벤치마크를 생성한 결과, 기존 데이터의 통계적 특성을 유지하는 합성 벤치마크와 다른 벤치마크와의 혼합으로 여러 특성을 가지는 벤치마크의 생성을 수행할 수 있었다.

Analysis of Time-Series data According to Water Reduce Ratio and Temperature and Humidity Changes Affecting the Decrease in Compressive Strength of Concrete Using the SARIMA Model

  • Kim, Joon-Yong
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권10호
    • /
    • pp.123-130
    • /
    • 2022
  • 본 논문은 건설현장의 콘크리트 붕괴사고를 사전에 예방하기 위한 조치 중 하나로 감수율에 따른 콘크리트강도 저하에 영향을 미치는 일일 시간대별 변화와 온도의 변화를 시계열데이터로 축적된 기상청 자료를 기반으로 분석했다. 감수율 발생 구간의 예측을 확인할 신뢰성 있는 모델로 규칙적이고 명확한 시계열데이터 모델에 적합한 SARIMA모델을 통하여 p_value는 0.5 이하, coef는 일방향으로 나타나는 등 검증 항목들이 신뢰성 확보에 유의미한 결과를 얻었다. 이러한 신뢰를 바탕으로 확보한 데이터를 이용하여 시간대별 온도변화와 구간별 감수율을 분석한 결과 7~8월, 12~13시, 29~31℃ 구간이 가장 큰 감수율을 나타냄을 알 수 있다. 연구 결과를 이용하여 연구 결과 구간의 요인이 발생하면 배치플랜트에서 물-시멘트 배합설계 시 감수율을 반영한 레미콘을 생산하여 감수율에 따른 콘크리트 압축강도 저하를 예방할 수 있을 것으로 기대된다.

시계열 모형을 이용한 해외건설 수주 전망 (Overseas Construction Order Forecasting Using Time Series Model)

  • 김운중
    • 한국건설관리학회논문집
    • /
    • 제19권2호
    • /
    • pp.107-116
    • /
    • 2018
  • 2010년 이후 한국 해외건설 수주가 극적 변동을 보임에 따라, 이에 대한 원인과 대응방안을 모색하고자 한다. 한국 해외건설은 2010년 716억불을 정점으로 2011년에서 2014년까지 연평균 638억불을 기록하였다. 하지만, 2014년 하반기부터 시작된 국제유가 하락으로 2015년 461억불을, 2016년 282억불, 2017년 290억불의 수주에 그쳤다. 국제 유가 하락과 더불어, 세계 경제 저성장 지속과 우리 기업의 EPC 수주 역량 한계점 봉착 등으로 불확실성이 과거 어느 때보다 증가하고 있다. 이와 같은 불확실한 해외건설시장 상황 속에서 적절한 대응방안을 모색하고, 많은 가능성과 글로벌 경쟁력을 갖추고 있는 해외건설산업을 국가수 출전략산업으로 육성 발전시키기 위하여, 세계건설시장과 해외건설시장의 발주 및 수주 구조와 그 변화추세를 분석하고, 향후 해외건설 수주 규모를 예측함으로써 해외건설산업의 건전한 육성 및 발전을 위한 정책 방향을 제시하고자 한다.

주요 지역별 특성과 이동 기간 학습 기법을 활용한 장기 전력수요 예측 모형 개발 (Development of Long-Term Electricity Demand Forecasting Model using Sliding Period Learning and Characteristics of Major Districts)

  • 공인택;정다빈;박상아;송상화;신광섭
    • 한국빅데이터학회지
    • /
    • 제4권1호
    • /
    • pp.63-72
    • /
    • 2019
  • 전력 에너지의 경우 발전 및 송전 과정을 거쳐 사용자에게 제공된 이후에는 회수가 불가능하기 때문에 정확한 수요 예측에 기반한 최적 발전 및 송배전 계획이 필요하다. 전력 수요 예측의 실패는 2011년 9월에 발생한 대규모 정전사태와 같이 다양한 사회적·경제적 문제를 야기할 수 있다. 전력 수요 예측 관련 기존 연구에서는 ARIMA, 신경망모형 등 다양한 방법으로 개발이 되었다. 하지만 전국 단위의 평균 외기온도를 사용한다는 점과, 계절성을 구분하기 위한 획일적 기준을 적용하는 한계점으로 인해 데이터의 왜곡이나 예측모형의 성능 저하를 초래하고 있다. 이에 본 연구에서는 전력 수요 예측 모형의 성능을 향상하기 위해 전국을 5대 권역으로 구분하여 지역적 특성과 이동 기간 학습 기법을 통해 계절적 특성을 반영한 선형회귀모형과 신경망 모형의 장기적 전력 수요 예측 모형을 개발하였다. 이를 통해 중장기부터 단기에 이르기까지 다양한 범위의 수요 예측에 해당 모델을 활용할 수 있을 뿐만 아니라 특정 기간 중에 발생하는 다양한 이벤트와 예외 상황을 고려할 수 있을 것이다.

  • PDF

순환 심층 신경망 모델을 이용한 전용회선 트래픽 예측 (Leased Line Traffic Prediction Using a Recurrent Deep Neural Network Model)

  • 이인규;송미화
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권10호
    • /
    • pp.391-398
    • /
    • 2021
  • 전용회선은 데이터 전송에 있어서 연결된 두 지역을 독점적으로 사용하는 구조이기 때문에 안정된 품질수준과 보안성이 확보되어 교환회선의 급격한 증가에도 불구하고 기업 내부에서는 지속적으로 많이 사용하는 회선 방식이다. 하지만 비용이 상대적으로 고가이기 때문에 기업 내 네트워크 운영자의 중요한 역할 중의 하나는 네트워크 전용회선의 자원을 적절히 배치하고 활용하여 최적의 상태를 유지하는 것이 중요한 요소이다. 즉, 비즈니스 서비스 요구 사항을 적절히 지원하기 위해서는 데이터 전송 관점에서 전용회선의 대역폭 자원에 대한 적절한 관리가 필수적이며 전용회선 사용량을 적절히 예측하고 관리하는 것이 핵심 요소가 된다. 이에 본 연구에서는 기업 네트워크에서 사용하는 전용회선의 실제 사용률 데이터를 기반으로 다양한 예측 모형을 적용하고 성능을 평가하였다. 일반적으로 통계적인 방법으로 많이 사용하는 평활화 기법 및 ARIMA 모형과 요즘 많은 연구가 되고 있는 인공신경망에 기반한 딥러닝의 대표적인 모형들을 적용하여 각각의 예측에 대한 성능을 측정하고 비교하였다. 또한, 실험결과에 기초하여 전용회선 자원의 효과적인 운영 관점에서 각 모형이 예측에 대하여 좋은 성능을 내기 위하여 고려해야 할 사항을 제안하였다.

임상병리사 인력의 수급전망과 정책방향 (Prospective Supply and Demand of Medical Technologists in Korea through 2030)

  • 오영호
    • 대한임상검사과학회지
    • /
    • 제50권4호
    • /
    • pp.511-524
    • /
    • 2018
  • 본 연구는 임상병리사 인력의 인력의 수급전망을 추계하여 인력계획 수립에 필요한 정책자료를 제공하는 것을 목적으로 한다. 공급은 기초추계(baseline projection) 모형에 근거한 인구학적 방법(demographic method)을 이용하여 추계하였으며, 수요추계는 임상병리사가 검사하는 임상병리검사 건수를 이용하는 의료수요에 의한 방법을 적용하였다. 전반적인 임상병리사 인력수급 추계결과는 생산성의 시나리오에 따라 공급이 과잉되기도 하고 부족하기도 할 것으로 전망되었다. 이렇게 임상병리사의 수급 비교 결과는 임상병리사의 생산성 가정에 따라 달라지지만, 어느 시나리오를 선택할 것인가는 궁극적으로 정부의 정책방향에 따라 달라진다. 즉 임상병리사의 생산성을 현재보다 높게 채택하는지 혹은 낮게 책정하는지는 보험재정 여건 등을 고려해야 하는 정부 정책에 달려있는 것이다. 이에 본 연구에서 정부의 정책방향이 고려되지 않은 2012년 현재의 생산성을 기준으로 한 '생산성 시나리오 3'을 살펴보면, ARIMA모델을 적용한 수요시나리오를 중심으로 보면 근무일수에 따라 2030년에는 2821명에서 4,530명의 임상병리사 공급이 과잉될 것으로 전망된다. 이러한 공급과잉은 전체에서 차지하는 비중이 10%미만이기 때문에 크게 문제가 되지 않을 것으로 판단된다. 그러나 임상병리사사 취업률이 60%대인 점을 감안하면 미취업자를 활용하는 정책도 함께 고려해야한다. 이러한 대책으로는 미취업인력에 대한 취업기회를 확대하는 방향으로 나아가야 할 것이고, 이를 위해서는 보건소 검사실의 기능강화 및 임상병리사 정원증원 및 신분보장, 통원치료 환자를 위한 상설 검사체제 확립, 산업재해 분야 및 의원급 검사기능 강화, 무면허 검사요원의 통제, 해외인력수출 확대 등이 필요할 것으로 사료된다.