• 제목/요약/키워드: ARCH model

검색결과 499건 처리시간 0.023초

DLP 프린터로 출력한 임시의치용 전악 인공치아의 후경화에 따른 변형 분석 (Analysis of deformation according to post-curing of complete arch artificial teeth for temporary dentures printed with a DLP printer)

  • 김동연;이광영
    • 대한치과기공학회지
    • /
    • 제43권2호
    • /
    • pp.48-55
    • /
    • 2021
  • Purpose: This study aimed to analyze deformation according to post-curing of complete arch artificial teeth for temporary dentures printed with a digital light processing (DLP) printer. Methods: An edentulous model was prepared and an occlusal rim was produced. The edentulous model and occlusal rim were scanned using a model scanner. A complete denture was designed using a dental computer-aided design, and the denture base and artificial tooth were separated. Ten complete arch artificial teeth were printed using a 3D printer (DLP). Complete arch artificial teeth was classified into the following three groups: a group no post-curing (NC), a group with 10 minutes post-curing (10M), and a group with 20 minutes post-curing (20M). Specimens were scanned using a model scanner. The scanned data were overlapped with the reference data. Statistical analysis was performed using one-way ANOVA analysis of variance, Kruskal-Wallis test, and Mann-Whitney U test (α=0.05). Results: Regarding the overall deviation of complete arch artificial teeth, the NC group showed the lowest mean deviation of 111.13 ㎛ and the 20M group showed the highest mean deviation of 131.03 ㎛. There were statistically significant differences among the three groups (p<0.05). Conclusion: The complete arch artificial tooth showed deformation due to post-curing. In addition, the largest shrinkage deformation was observed at 10 minutes of post-curing, whereas the least deformation was observed at 20 minutes.

터널의 지보방법에 관한 원심모형실험(遠心模型實驗) (The Support Types of the Tunnel for Centrifuge Model)

  • 유남재;이명욱;박병수
    • 산업기술연구
    • /
    • 제22권B호
    • /
    • pp.199-209
    • /
    • 2002
  • This research is experimental thesis to prepare the structural safety of the upper bridge for support type on tunnel and the effect of settlement. Unit weight test and uni-axial compression test have been performed to simulate the physical property of foundation on the tunnel. Tunnel model of slip form type for centrifuge model has been developed to performed the tunnel excavation while field stress is activated. And the support type of tunnel such as umbrella arch method and large diameter steel pipe reinforce method has been tested for the centrifuge model. After the analysis of experiment, results show that internal displacement of large diameter steel pipe reinforce method is smaller than that of the umbrella arch method.

  • PDF

Assessment of a concrete arch bridge using static and dynamic load tests

  • Caglayan, B. Ozden;Ozakgul, Kadir;Tezer, Ovunc
    • Structural Engineering and Mechanics
    • /
    • 제41권1호
    • /
    • pp.83-94
    • /
    • 2012
  • Assessment of a monumental concrete arch bridge with a total length of 210 meters having three major spans of 30 meters and a height of 65 meters, which is located in an earthquake-prone region in southern part of the country is presented in this study. Three-dimensional finite element model of the bridge was generated using a commercially available general finite element analysis software and based on the outcomes of a series of in-depth acceleration measurements that were conducted on-site, the model was refined. By using the structural parameters obtained from the dynamic and the static tests, calibrated model of the bridge structure was obtained and this model was used for necessary calculations regarding structural assessment and evaluation.

Modal and structural identification of a R.C. arch bridge

  • Gentile, C.
    • Structural Engineering and Mechanics
    • /
    • 제22권1호
    • /
    • pp.53-70
    • /
    • 2006
  • The paper summarizes the dynamic-based assessment of a reinforced concrete arch bridge, dating back to the 50's. The outlined approach is based on ambient vibration testing, output-only modal identification and updating of the uncertain structural parameters of a finite element model. The Peak Picking and the Enhanced Frequency Domain Decomposition techniques were used to extract the modal parameters from ambient vibration data and a very good agreement in both identified frequencies and mode shapes has been found between the two techniques. In the theoretical study, vibration modes were determined using a 3D Finite Element model of the bridge and the information obtained from the field tests combined with a classic system identification technique provided a linear elastic updated model, accurately fitting the modal parameters of the bridge in its present condition. Hence, the use of output-only modal identification techniques and updating procedures provided a model that could be used to evaluate the overall safety of the tested bridge under the service loads.

모듈러 지중아치 구조 안전성 검토를 위한 간략 해석 및 평가방법에 관한 연구 (A Study on Simplified Analysis and Estimation Method for Evaluation of Structural Safety in Modular Underground Arch Structure)

  • 권태윤;조광일;이원홍;안진희
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제26권3호
    • /
    • pp.55-63
    • /
    • 2022
  • 모듈러 지중아치 구조는 시공과정이 단순하며 강재와 콘크리트를 이용하여 시공 및 공용 중에 발생하는 단면력에 대하여 효과적으로 저항할 수 있는 구조로 제안되어 15m 이하의 지간에 대하여 3차원 구조해석 및 실험을 통하여 구조적 거동이 평가되었다. 일반적으로 지중아치와 터널 등의 구조해석의 경우 2차원이나 3차원 구조해석 방법이 적용될 수 있다. 하지만, 모듈러 지중아치 구조의 구조적 안전성 평가를 위하여 2차원이나 3차원 구조해석 방법을 적용할 경우 구조해석을 위한 모형화가 어렵고, 해석시간이 과도하게 오래 걸릴 수 있으므로, 모듈러 지중아치 구조의 설계과정에서 필요한 구조 안전성 및 토압 등을 고려한 구조해석 방법으로는 합리적이지 않을 수 있다. 또한, 사전에 결정된 단면이 적용가능한 지간에 대하여 모듈러 지중아치 구조를 구성하는 경우 지간과 하중조건에 따른 단면과 구조적 안전성만을 평가하는 것이 합리적일 수 있다. 따라서, 본 연구에서는 효율적인 구조 안전성 평가를 위하여 프레임 요소를 이용한 구조해석 모델을 제안하고, 2차원 구조해석모델과 프레임 요소를 이용한 간략해석모델의 구조해석 결과를 비교하였으며, 간략해석 방법을 이용하여 20m지간의 모듈러 지중아치구조의 구조적 안전성을 평가하였다.

Assessment of load carrying capacity and fatigue life expectancy of a monumental Masonry Arch Bridge by field load testing: a case study of veresk

  • Ataei, Shervan;Tajalli, Mosab;Miri, Amin
    • Structural Engineering and Mechanics
    • /
    • 제59권4호
    • /
    • pp.703-718
    • /
    • 2016
  • Masonry arch bridges present a large segment of Iranian railway bridge stock. The ever increasing trend in traffic requires constant health monitoring of such structures to determine their load carrying capacity and life expectancy. In this respect, the performance of one of the oldest masonry arch bridges of Iranian railway network is assessed through field tests. Having a total of 11 sensors mounted on the bridge, dynamic tests are carried out on the bridge to study the response of bridge to test train, which is consist of two 6-axle locomotives and two 4-axle freight wagons. Finite element model of the bridge is developed and calibrated by comparing experimental and analytical mid-span deflection, and verified by comparing experimental and analytical natural frequencies. Analytical model is then used to assess the possibility of increasing the allowable axle load of the bridge to 25 tons. Fatigue life expectancy of the bridge is also assessed in permissible limit state. Results of F.E. model suggest an adequacy factor of 3.57 for an axle load of 25 tons. Remaining fatigue life of Veresk is also calculated and shown that a 0.2% decrease will be experienced, if the axle load is increased from 20 tons to 25 tons.

Development of engineering software to predict the structural behavior of arch dams

  • Altunisik, Ahmet Can;Kalkan, Ebru;Basaga, Hasan Basri
    • Advances in Computational Design
    • /
    • 제3권1호
    • /
    • pp.87-112
    • /
    • 2018
  • In this study, it is aimed to present engineering software to estimate the structural response of concrete arch dam. Type-1 concrete arch dam constructed in the laboratory is selected as a reference model. Finite element analyses and experimental measurements are conducted to show the accuracy of initial model. Dynamic analyses are carried out by spectrum analysis under empty reservoir case considering soil-structure interaction and fixed foundation condition. The displacements, principal stresses and strains are presented as an analysis results at all nodal points on downstream and upstream faces of dam body. It is seen from the analyses that there is not any specific ratio between prototype and scaled models for each nodal point with different scale values. So, dynamic analyses results cannot be generalized with a single formula. To eliminate this complexity, the regression analysis, which is a statistical method to obtain the real model results according to the prototype model by using fitting curves, is used. The regression analysis results are validated by numerical solutions using ANSYS software and the error percentages are examined. It is seen that 10% error rates are not exceeded.

Manual model updating of highway bridges under operational condition

  • Altunisik, Ahmet C.;Bayraktar, Alemdar
    • Smart Structures and Systems
    • /
    • 제19권1호
    • /
    • pp.39-46
    • /
    • 2017
  • Finite element model updating is very effective procedure to determine the uncertainty parameters in structural model and minimize the differences between experimentally and numerically identified dynamic characteristics. This procedure can be practiced with manual and automatic model updating procedures. The manual model updating involves manual changes of geometry and analyses parameters by trial and error, guided by engineering judgement. Besides, the automated updating is performed by constructing a series of loops based on optimization procedures. This paper addresses the ambient vibration based finite element model updating of long span reinforced concrete highway bridges using manual model updating procedure. Birecik Highway Bridge located on the $81^{st}km$ of Şanliurfa-Gaziantep state highway over Firat River in Turkey is selected as a case study. The structural carrier system of the bridge consists of two main parts: Arch and Beam Compartments. In this part of the paper, the arch compartment is investigated. Three dimensional finite element model of the arch compartment of the bridge is constructed using SAP2000 software to determine the dynamic characteristics, numerically. Operational Modal Analysis method is used to extract dynamic characteristics using Enhanced Frequency Domain Decomposition method. Numerically and experimentally identified dynamic characteristics are compared with each other and finite element model of the arch compartment of the bridge is updated manually by changing some uncertain parameters such as section properties, damages, boundary conditions and material properties to reduce the difference between the results. It is demonstrated that the ambient vibration measurements are enough to identify the most significant modes of long span highway bridges. Maximum differences between the natural frequencies are reduced averagely from %49.1 to %0.6 by model updating. Also, a good harmony is found between mode shapes after finite element model updating.

PRELIMINARY DETECTION FOR ARCH-TYPE HETEROSCEDASTICITY IN A NONPARAMETRIC TIME SERIES REGRESSION MODEL

  • HWANG S. Y.;PARK CHEOLYONG;KIM TAE YOON;PARK BYEONG U.;LEE Y. K.
    • Journal of the Korean Statistical Society
    • /
    • 제34권2호
    • /
    • pp.161-172
    • /
    • 2005
  • In this paper a nonparametric method is proposed for detecting conditionally heteroscedastic errors in a nonparametric time series regression model where the observation points are equally spaced on [0,1]. It turns out that the first-order sample autocorrelation of the squared residuals from the kernel regression estimates provides essential information. Illustrative simulation study is presented for diverse errors such as ARCH(1), GARCH(1,1) and threshold-ARCH(1) models.

Effect of construction sequence on three-arch tunnel behavior-Numerical investigation

  • Yoo, C.;Choi, J.
    • Geomechanics and Engineering
    • /
    • 제15권3호
    • /
    • pp.911-917
    • /
    • 2018
  • This paper concerns a numerical investigation on the effect of construction sequence on three-arch (3-Arch) tunnel behavior. A three-arch tunnel section adopted in a railway tunnel construction site was considered in this study. A calibrated 3D finite element model was used to conduct a parametric study on a variety of construction scenarios. The results of analyses were examined in terms of tunnel and ground surface settlements, shotcrete lining stresses, loads and stresses developed in center column in relation to the tunnel construction sequence. In particular, the effect of the side tunnel construction sequence on the structural performance of the center structure was fully examined. The results indicated that the load, thus stress, in the center structure can be smaller when excavating two side tunnels from opposite direction than excavating in the same direction. Also revealed was that no face lagging distance between the two side tunnels impose less ground load to the center structure. Fundamental governing mechanism of three-arch tunnel behavior is also discussed based on the results.