• Title/Summary/Keyword: ARC CONTROL

Search Result 675, Processing Time 0.025 seconds

Development of Fuzzy Controller for Stabilizing the Arc State in Gas Metal Arc Welding (GMA 용접에 있어서 아크 안정화를 위한 퍼지제어기 개발에 관한 연구)

  • Kang, Moon-Jin;Lee, Se-Hun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.12
    • /
    • pp.152-160
    • /
    • 1999
  • The weld quality of $CO_2$ arc welding is closely related to the arc stability. As the characteristics of the arc are excessively complex and nonlinear, it is not easy to make the arc model as mathematical form and to control the arc state to be stabilized. This paper was aimed to estimate the arc stability and to control for stabilizing the arc state in short circuit metal transfer mode of $CO_2$ arc welding. For these purposes, the behaviors of arc stability was investigated at different welding conditions using Mita's arc stability index, and the fuzzy control algorithm which uses the arc stability index as control imput and the arc voltage as control output was developed. In the control of the arc stability, the experiments of two cases were performed; the case of setting an initial welding voltage arbitrarily, the case of the step change in workpiece shape. Obtained results were as follows; Mita's arc stability index was able to be estimated qualitatively in the case of using the inverter type welding power source and the control performance for stabilizing the arc status was excellent in the case of existing step change disturbance.

  • PDF

Control Algorithm Development for an Arc Current Interruption (아크 전류 차단을 위한 제어알고리즘 개발)

  • 반기종;김낙교
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.3
    • /
    • pp.166-172
    • /
    • 2004
  • Arc Fault Current is an electric discharge which is occurred in two opposite electrode. In this Paper, arc current control algorithm is designed for the interruption of arc fault current which is occurred in the low voltage network. This arc Is one of the main causes of electric fire. Arc fault in electrical network has the characteristics of low current, high impedance and high frequency. Conventional control algorithm does not have the arc current interrupt function. Hence, Control algorithm of arc current is designed for the interruption of arc fault current which has the modified arc characteristics.

A Study on Welding Performance Improvement of $CO_2$ Inverter Arc Welding Machine by Arc Reignition Detection (아크 재생 검출에 의한 $CO_2$ 인버터 아크 용접기의 용접성능향상에 관한연구)

  • 이정락
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.581-586
    • /
    • 2000
  • Gas metal arc welding(GMAW) uses a continuously fed electrode as a filler metal. The arc is shielded from atmospheric contamination by an inert gas active or inert/active gas mixture delivered through the welding gun and cable assembly. The recent research topics on $CO_2$ are welding machines are focused mainly on the reduction method of generated spatter by using new type consumable electrode metal or inverter control method. The various current waveform control methods have been researched for welding performance improvement. Until now current waveform control methods reduce to spatter occurred by instantaneous short circuiting,. but these methods is drawback that no reduce spatter occurred by arc reignition. In this paper the previous arc reignition current control method for welding performance improvement of inverter arc welding machine is studied and compared the various current control methods with the previous arc reignition current control method.

  • PDF

A Study of an Automatic Tip-to-Workpiece Distance Control System for Plasma Arc Cutting (플라즈마 아크 절단에서 팁-모재간 거리 자동제어 시스템에 관한 연구)

  • 구진모;김재웅
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.7
    • /
    • pp.132-140
    • /
    • 2000
  • Plasma arc cutting is one of the most widely used processes in metal cutting fields and is a process that produces parted metal plates by cutting them with an arc plasma established between the electrode tip and the plate(workpiece). When the tip-to-workpiece distance varies during cutting, the cut quality, for example the kerf width, is deteriorated by the change of plasma arc. The variations of tip-to-workpiece distance are due to the different factors such as inaccuracies in setting the torch or workpiece, thermal distortions during cutting, and uneven surface of workpiece. The control to keep the tip-to-workpiece distance constant is thus indispensable to improve the flexibility of automatic plasma arc cutting system applications. In this study, an arc sensor which utilizes the electrical signal obtained from the plasma arc itself was developed. The arc sensor has an advantage that no particular sensing device is necessary and real-time sensing of the tip-to-workpiece distance is possible directly under the plasma arc. The relationship between plasma arc voltage and tip-to-workpiece distance was determined through the repeated experimental results. The model was used for developing an automatic tip-to-workpiece distance control system of plasma arc cutting. It could be shown that the proposed system has a successful capability of tip-to-workpiece distance control.

  • PDF

A Study on Arc Force Sensor for a Robotic Welding Control System

  • Son, Joon-Sik;Kim, Ill-Soo;Choi, Seung-Gap;Kueon, Yeong-Seob;Lee, Duk-Man
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.128.5-128
    • /
    • 2001
  • This paper presents investigation of an arc force sensor for a robotic welding control system. Arc force sensor is employed in this research to monitor the bead geometry of the arc welding process. Arc force sensor mounted at the end of the robot wrist was employed to measure the arc force applied to the weld. Experimental configuration for measurement of arc force was used to quantify the changes in the arc force distributions of the plate being welded. A relationship between the bead dimension and the arc force distributions was established. The sensor information was used to establish a relationship between welding current and arc force. Arc force sensor have shown to be one of the most sophisticated technique to monitor perturbations that occurred during robotic arc welding process.

  • PDF

Design of Control a Algorithm for Arc Fault Current without Current Sensor (센서없는 아크고장전류 제어 알고리즘 설계)

  • Ban, Gi-Jong;Kim, Lark-Kyo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.6
    • /
    • pp.255-260
    • /
    • 2006
  • Arc Fault Current is an which occurrs in two opposite electrode. In this paper, arc current control algorithm is designed for the interruption of arc fault current which is occurred in the low voltage network. This arc is one of the main causes of electric fire. General arc current sensor has troubles for detecting arc currents, thus we would like to propose the arc current detection method without current sensor. In this parer, arc discharge currents within power lines are being detected through the arc current control algorithm.

Technology on Arc Welding Machine of Aluminum by Digital Control (디지털 제어를 이용한 알루미늄 아크 용접기의 기술현황)

  • Lee, Chang-Je;Kim, Yu-Chan;Kim, Jong-Do
    • Journal of Welding and Joining
    • /
    • v.31 no.1
    • /
    • pp.26-32
    • /
    • 2013
  • Recently, welding technology of nonferrous metals which were difficult to implement by arc welder has become available through digitalization of arc welding machine. Among them, the welding quality improvement of aluminum welding is very noticeable. These results increase the arc stability by controlling arc current and voltage waveform precisely, and control wire feed speed by synchronizing with arc current which the feed rate of filler wire is controlled by a precise motor control of servomotor and not by a simple constant speed feeding. Not only through the hardware digitalization of arc welding machine but also through advance of software of arc welding, it became possible to implement a certain level of welding quality by a simple operation. These led to CMT welding process implementation which requires low heat input than current arc welding and highly increased the applicability of the aluminum welding.

Comparison of Arc Control Ability as a Function of Configuration of Spiral Type VI Contacts by Measuring Arcing Time (아크지속시간 측정을 통한 나선형 VI 전극의 전극배치에 따른 아크제어 성능비교)

  • Kim, byoung-Chul;Park, Hong-Tae;Oh, Ill-Sung;Lim, Kee-Joe
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.2
    • /
    • pp.184-190
    • /
    • 2009
  • One of the purposes of arc control is to change its state to the diffuse state before current zero as soon as possible. This can provide optimal conditions for full extinction of arc by minimizing the quantity of residual plasma between contacts near current zero. TRV(transient recovery voltage) occurs at current zero at the same time with current interruption. If there is substantial residual plasma near current zero it can cause 'post arc current' by the interaction of its conductance with TRV. In this paper, arc control ability as a function of configuration of spiral type VI contacts was compared on the criteria of the time taken for arc to reach to the diffuse state.

A Study on the Weavingless Arc Sensor System in GMA Welding (II) -Torch Height Control in Weld Seam Tracking (GMA 용접에서 강제적인 위빙이 없는 아크센서 시스템에 관한 연구 (II) -용접선 추적의 토치방향 높이제어-)

  • 안재현;김재웅
    • Journal of Welding and Joining
    • /
    • v.16 no.3
    • /
    • pp.55-63
    • /
    • 1998
  • Among the position sensing methods available, the arc sensor which utilizes the electrical signal obtained from the welding arc itself is one of the most prevalently used methods, because it has an advantage that no particular sensing device is necessary and real-time sensing of a groove position is possible directly under the arc. The authors have already developed a seam tracking system that contains a new arc sensor algorithm, which uses the relative welding current variation according to the tip-to-workpiece distance in GMA welding. In this study a torch height control algorithm for automatic weld seam tracking was proposed for completing the previous system, which uses an on-off control technique. To implement the torch height control algorithm during weld seam tracking the system parameters which include 2nd averaging range, weighting factor for 2nd moving averaging, and Z-directional basic compensation distance were determined by experimental analysis. Finally the two different height control methods, one is simple on-off control and the other on-off control using a reference current value , were compared in their tracking abilities.

  • PDF

Arc welding robot controller (아크 용접 로보트 제어기)

  • 김성권;김동일;황찬영;윤명균
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.270-275
    • /
    • 1993
  • In this paper, the arc welding robot controller using a touch sensor and a arc sensor is presented. The controller is composed of robot controller parts for moving torch, and arc welding controller for welding and tracking. In the controller, an compensated data is generated to control robot trajectory and seam tracking by the arc sensor function. The data is obtained by integration of arc current. Experimental results are presented confirming the controller performance.

  • PDF