• Title/Summary/Keyword: AR processes

Search Result 214, Processing Time 0.029 seconds

Inhibition of ethylene biosynthesis enhances embryogenesis of cultured microspores of Brassica napus

  • Leroux, Benoit;Carmoy, Nathalie;Giraudet, Delphine;Potin, Philippe;Larher, Francois;Bodin, Manuelle
    • Plant Biotechnology Reports
    • /
    • v.3 no.4
    • /
    • pp.347-353
    • /
    • 2009
  • Procedures that induce microspore embryogenesis have been described for a range of Brassica species, but embryo yield remains low for a number of genotypes. We have carried out experiments with the microspores from a weakly responsive line of B. napus to determine the culture conditions that optimize their in vitro embryogenesis by treating them with effectors of ethylene synthesis and action. The results revealed that isolated microspores subjected to an initial heat stress in a medium supplemented with inhibitors of ethylene synthesis such as AVG and $CoCl_2$ exhibited significantly increased embryo yields. This suggested that regulatory effects are exerted by the ethylene produced by the isolated microspores on the early processes of gametogenesis. As a consequence, treatment of microspores with SAM, an ethylene synthesis precursor, or with the ethylene-releasing agent ethephon, led to decreases in embryo yield. A special response to ethylene during the early stages of microspore development was finally shown to occur through experiments where isolated microspores were treated for increasing periods of time with $CoCl_2$. Collectively, our data demonstrated that the induction of embryogenesis induced by heat stress can be enhanced by inhibitors of ethylene biosynthesis.

The Effects of Ar-ion Bombardment and Annealing of D2O/Zircaloy-4 Surfaces Using XPS and UPS

  • Oh, Kyung-Sun;Kang, Yong-Cheol
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.8
    • /
    • pp.1341-1345
    • /
    • 2007
  • The surface chemistry of D2O dosed Zircaloy-4 (Zry-4) surface followed by Ar-ion bombardment and annealing was studied by means of X-ray photoelectron spectroscopy (XPS) and Ultraviolet photoelectron spectroscopy (UPS). In the XPS study, Ar-ion bombardment caused decrease of the oxygen on the surface region of Zry-4 and therefore led to change the oxidation states of the zirconium from oxide to metallic form. In addition, oxidation states of zirconium were changed to lower oxidation states of zirconium due to depopulation of oxygen on the surface region by annealing. Up to about 787 K, the bulk oxygen diffused out to the subsurface region and after this temperature, the oxygen on the surface of Zry-4 was depopulated. UPS study showed that the valence band spectrum of the D2O exposed Zry-4 exhibited a dominant peak at around 13 eV and no clear Fermi edge was detected. After stepwise Ar+ sputtering processes, the decrease of the oxygen on the surface of Zry-4 led to suppress the dominant peak around 13 eV, the peak around 9 eV and develop a new peak of the metallic Zr 4d state (20.5-21.0 eV) at the Fermi level.

INFLUENCE OF MECHANICAL ALLOYING ATMOSPHERES ON THE MICROSTRUCTURES AND MECHANICAL PROPERTIES OF 15Cr ODS STEELS

  • Noh, Sanghoon;Choi, Byoung-Kwon;Kang, Suk Hoon;Kim, Tae Kyu
    • Nuclear Engineering and Technology
    • /
    • v.46 no.6
    • /
    • pp.857-862
    • /
    • 2014
  • Mechanical alloying under various gas atmospheres such as Ar, an Ar-$H_2$ mixture, and He gases were carried out, and its effects on the powder properties, microstructure and mechanical properties of ODS ferritic steels were investigated. Hot isostatic pressing and hot rolling processes were employed to consolidate the ODS steel plates. While the mechanical alloyed powder in He had a high oxygen concentration, a milling in Ar showed fine particle diameters with comparably low oxygen concentration. The microstructural observation revealed that low oxygen concentration contributed to the formation of fine grains and homogeneous oxide particle distribution by the Y-Ti-O complex oxides. A milling in Ar was sufficient to lower the oxygen concentration, and this led a high tensile strength and fracture elongation at a high temperature. It is concluded that the mechanical alloying atmosphere affects oxygen concentration as well as powder particle properties. This leads to a homogeneous grain and oxide particle distribution with excellent creep strength at high temperature.

High Durable Anti-Reflective Polymer with Silica Nanoparticle Array Fabricated by RF Magnetron Sputter (RF sputter를 이용한 실리카 증착 고 내구성 반사 방지막 제조)

  • Jeon, Seong-Gwon;Jeong, Eun-Uk;Rha, Jong-Joo;Kwon, Jung-Dae
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.2
    • /
    • pp.84-89
    • /
    • 2019
  • We fabricated durable anti-reflective(AR) layer with silica globular coating on polymer by two steps. Firstly, nano-protrusions of polymer were formed by plasma etching known as R.I.E(reactive ion etching) process. Secondly, silica globular coating was deposited on polymer nano-protrusions for mechanically protective and optically enhancing AR layers by RF magnetron sputter. And then durable antireflective polymers were synthesized adjusting plasma power and time, working pressures of RIE and RF sputtering processes. Consequently, we acquired the average transmission (94.10%) in the visible spectral range 400-800 nm and the durability of AR layer was verified to sustain its transmission until 5,000 numbers by rubber test at a load of 500 gf.

AR-based 3D Digital Map Visualization Support Technology for Field Application of Smart Construction Technology

  • Song, Jinwoo;Hong, Jungtaek;Kwon, Soonwook
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1255-1255
    • /
    • 2022
  • Recently, research on digital twins to generate digital information and manage construction in real-time using advanced technology is being conducted actively. However, in the construction industry, it is difficult to optimize and apply digital technology in real-time due to the nature of the construction industry in which information is constantly fluctuating. In addition, inaccurate information on the topography of construction projects is a major challenge for earthmoving processes. In order to ultimately improve the cost-effectiveness of construction projects, both construction quality and productivity should be addressed through efficient construction information management in large-scale earthworks projects. Therefore, in this study, a 3D digital map-based AR site management work support system for higher efficiency and accuracy of site management was proposed by using unmanned aerial vehicles (UAV) in wide earthworks construction sites to generate point cloud data, building a 3D digital map through acquisition and analysis of on-site sensor-based information, and performing the visualization with AR at the site By utilizing the 3D digital map-based AR site management work support system proposed in this study, information is able to be provided quickly to field managers to enable an intuitive understanding of field conditions and immediate work processing, thereby reducing field management sluggishness and limitations of traditional information exchange systems. It is expected to contribute to the improvement of productivity by overcoming factors that decrease productivity in the construction industry and the improvement of work efficiency at construction sites.

  • PDF

PYROPROCESSING TECHNOLOGY DEVELOPMENT AT KAERI

  • Lee, Han-Soo;Park, Geun-Il;Kang, Kweon-Ho;Hur, Jin-Mok;Kim, Jeong-Guk;Ahn, Do-Hee;Cho, Yung-Zun;Kim, Eung-Ho
    • Nuclear Engineering and Technology
    • /
    • v.43 no.4
    • /
    • pp.317-328
    • /
    • 2011
  • Pyroprocessing technology was developed in the beginning for metal fuel treatment in the US in the 1960s. The conventional aqueous process, such as PUREX, is not appropriate for treating metal fuel. Pyroprocessing technology has advantages over the aqueous process: less proliferation risk, treatment of spent fuel with relatively high heat and radioactivity, compact equipment, etc. The addition of an oxide reduction process to the pyroprocessing metal fuel treatment enables handling of oxide spent fuel, which draws a potential option for the management of spent fuel from the PWR. In this context, KAERI has been developing pyroprocessing technology to handle the oxide spent fuel since the 1990s. This paper describes the current status of pyroprocessing technology development at KAERI from the head-end process to the waste treatment. A unit process with various scales has been tested to produce the design data associated with the scale up. A performance test of unit processes integration will be conducted at the PRIDE facility, which will be constructed by early 2012. The PRIDE facility incorporates the unit processes all together in a cell with an Ar environment. The purpose of PRIDE is to test the processes for unit process performance, operability by remote equipment, the integrity of the unit processes, process monitoring, Ar environment system operation, and safeguards related activities. The test of PRIDE will be promising for further pyroprocessing technology development.

The surface kinetic properties between $BCl_3/Cl_2$/Ar plasma and $Al_2O_3$ thin film

  • Yang, Xue;Kim, Dong-Pyo;Um, Doo-Seung;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.169-169
    • /
    • 2008
  • To keep pace with scaling trends of CMOS technologies, high-k metal oxides are to be introduced. Due to their high permittivity, high-k materials can achieve the required capacitance with stacks of higher physical thickness to reduce the leakage current through the scaled gate oxide, which make it become much more promising materials to instead of $SiO_2$. As further studying on high-k, an understanding of the relation between the etch characteristics of high-k dielectric materials and plasma properties is required for the low damaged removal process to match standard processing procedure. There are some reports on the dry etching of different high-k materials in ICP and ECR plasma with various plasma parameters, such as different gas combinations ($Cl_2$, $Cl_2/BCl_3$, $Cl_2$/Ar, $SF_6$/Ar, and $CH_4/H_2$/Ar etc). Understanding of the complex behavior of particles at surfaces requires detailed knowledge of both macroscopic and microscopic processes that take place; also certain processes depend critically on temperature and gas pressure. The choice of $BCl_3$ as the chemically active gas results from the fact that it is widely used for the etching o the materials covered by the native oxides due to the effective extraction of oxygen in the form of $BCl_xO_y$ compounds. In this study, the surface reactions and the etch rate of $Al_2O_3$ films in $BCl_3/Cl_2$/Ar plasma were investigated in an inductively coupled plasma(ICP) reactor in terms of the gas mixing ratio, RF power, DC bias and chamber pressure. The variations of relative volume densities for the particles were measured with optical emission spectroscopy (OES). The surface imagination was measured by AFM and SEM. The chemical states of film was investigated using X-ray photoelectron spectroscopy (XPS), which confirmed the existence of nonvolatile etch byproducts.

  • PDF

A Study on the Phase Transformations of (TiAl)N Films Deposited by TFT Sputtering System (TFT(Two-Facing-Targets) 스퍼터장치에 의해 증착된 (TiAl)N 박막의 상변태에 관한 연구)

  • Han, Chang-Suk
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.5
    • /
    • pp.281-287
    • /
    • 2005
  • Titanium aluminium nitride((TiAl)N) film is anticipated as an advanced coating film with wear resistance used for drills, bites etc. and with corrosion resistance at a high temperature. In this study, (TiAl)N thin films were deposited both at room temperature and at elevated substrate temperatures of 573 to 773 K by using a two-facing-targets type DC sputtering system in a mixture Ar and $N_2$ gases. Atomic compositions of the binary Ti-Al alloy target is Al-rich (25Ti-75Al (atm%)). Process parameters such as precursor volume %, substrate temperature and Ar/$N_2$ gas ratio were optimized. The crystallization processes and phase transformations of (TiAl)N thin films were investigated by X-ray diffraction, field-emission scanning electron microscopy. The microhardness of (TiAl)N thin films were measured by a dynamic hardness tester. The films obtained with Ar/$N_2$ gas ratio of 1:3 and at 673 K substrate temperature showed the highest microhardness of $H_v$ 810. The crystallized and phase transformations of (TiAl)N thin films were $Ti_2AlN+AlN{\rightarrow}TiN+AlN$ for Ar/$N_2$ gas ratio of 1:3, $Ti_2AlN+AlN{\rightarrow}TiN+AlN{\rightarrow}Ti_2AlN+TiN+AlN$ for Ar/$N_2$ gas ratio of 1:1 and $TiN+AlN{\rightarrow}Ti_2AlN+TiN+AlN{\rightarrow}Ti_2AlN+AlN{\rightarrow}Ti_2AlN+TiN+AlN$ for Ar/$N_2$ gas ratio of 3:1. The above results are discussed in terms of crystallized phases and microhardness.

A Performance Evaluation of Governmental Funding Projects for IT Small and Medium-Sized Enterprises and Venture Business Using DEA/AR-I (DEA/AR-I을 활용한 IT 중소.벤처기업 정부자금지원정책 성과평가)

  • Park, Sung-Min;Kim, Heon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.12B
    • /
    • pp.815-825
    • /
    • 2007
  • It is necessary to establish a systematic framework where the performance of governmental funding projects can be evaluated just-in-time as well as objectively regarding IT small and medium-sized enterprises and venture business. In this study, a framework is proposed for the performance evaluation using Data Envelopment Analysis (DEA) and a case study is illustrated with an empirical dataset. Especially, in order to enhance the reliability of optimal solutions, a DEA/AR-I revised model is developed by adding Acceptance Region (AR) Type I constraints into the DEA basic model. Based on the procedure and the models, it is considered that an 'efficiency score' can be calculated as a guideline for conducting successive performance evaluation processes fast. As for major governmental funding projects with respect to 'IT SMERP 2010 Plan', performance evaluations are discussed concerning between projects as well as between corporate entities within each project.

Measurement of Interface Trapped Charge Densities $(D_{it})$ in 6H-SiC MOS Capacitors

  • Lee Jang Hee;Na Keeyeol;Kim Kwang-Ho;Lee Hyung Gyoo;Kim Yeong-Seuk
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.343-347
    • /
    • 2004
  • High oxidation temperature of SiC shows a tendency of carbide formation at the interface which results in poor MOSFET transfer characteristics. Thus we developed oxidation processes in order to get low interface charge densities. N-type 6H-SiC MOS capacitors were fabricated by different oxidation processes: dry, wet, and dry­reoxidation. Gate oxidation and Ar anneal temperature was $1150^{\circ}C.$ Ar annealing was performed after gate oxidation for 30 minutes. Dry-reoxidation condition was $950^{\circ}C,$ H2O ambient for 2 hours. Gate oxide thickness of dry, wet and dry-reoxidation samples were 38.0 nm, 38.7 nm, 38.5 nm, respectively. Mo was adopted for gate electrode. To investigate quality of these gate oxide films, high frequency C- V measurement, gate oxide leakage current, and interface trapped charge densities (Dit) were measured. The interface trapped charge densities (Dit) measured by conductance method was about $4\times10^{10}[cm^{-1}eV^{-1}]$ for dry and wet oxidation, the lowest ever reported, and $1\times10^{11}[cm^{-1}eV^{-1}]$ for dry-reoxidation

  • PDF