• Title/Summary/Keyword: APEX model

Search Result 143, Processing Time 0.027 seconds

A STUDY ON STRESS DISTRIBUTION OF ENDODONTICALLY TREATED TOOTH ACCORDING TO THE VARIOUS POST LENGTH USINGTHREE-DIMENSIONAL FINITE ELEMENT METHOD (포스트 길이가 치근내 응력분산에 미치는 영향에 관한 삼차원 유한요소법적 연구)

  • Choi, Soo-Yong;Lee, Sun-Hyung;Yang, Jae-Ho;Chung, Hun-Young
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.33 no.2
    • /
    • pp.177-197
    • /
    • 1995
  • The endodontically treated tooth is generally restored with post & core, owing to the brittleness and the loss of large amount of tooth structure. Although there have been lots of studies about the endodontically treated teeth, the three-dimensional quantitative studies about the strees distribution of them are in rare cases. In this study, it was assumed that the coronal portion of the upper incisou had severely damaged. After the root canal therapy it was post cored, and restored with PFM crown, for this experiment nine types of model were constructed : 1); long, 2); medium, 3); short gold post for the roots supported with a narmal alveolar bone, 4); long, 5); medium, 6); short gold post for the roots supported with an alveolar bone resorbed to its 1/3 of root length, 7); long, 8); medium, 9); short base metal post for the roots supported with an alveolar bone resorbed to its 1/3 of root length. Force was applied from two directions. One was functional maximum bite force(300N) applied to the spot just lingual to the incisal edge with the angle of 45 degrees to the long axis of the tooth, and the other one was horizontal force(300N) applied to the labial surface. The results analyzed with three-dimensional finite element method were as follows : 1. Stress was concentrated on the middle portion of the labial side dentin of the root and the lingual portion of the apical dentin of the root. Stress in the post showed maximum value at 2 mm above the post apex. 2. In case of the long post and base metal post, strees was concentrated on the apex of the root and the post. 3. In case of the longer post, the displacement on the post-cement interface was lessened. The gold post was more displaceable than the base metal post. 4. In case of the alveolar bone resorption, stress concentrated on the root and the post and displacement on the post-cement interface were increased.

  • PDF

A PHOTOELASTIC STRESS ANALYSIS OF FIXED PARTIAL DENTURES WITH ENDOPOREIMPLANTS ACCORDING TO SPLINTING, CONTACT TIGHTNESS, AND CROWN LENGTH (연결고정, 인접면 접촉강도 및 치관길이에 따른 엔도포어 임플란트를 이용한 고정성 국소의치의 광탄성 응력 분석)

  • Jeong, Hoe-Yeol;Choi, Min-Ho;Kim, Yu-Lee;Cho, Hye-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.4
    • /
    • pp.425-442
    • /
    • 2004
  • Statement of problem: A difficulty in achieving a passive-fitting prosthesis can be overcome by individual crown restoation of multiple implants. But individualized crown has another difficulty in control of contact tightness and stress distribution. Purpose: This in vitro study is to evaluate the stress distribution and the magnitude in the supporting tissues around Endopore implants with different crown lengths, interproximal contact tightness, and the splinting effects. Material & methods: Three Endopore implants($4.1{\times}9mm$) were placed in the mandibular posterior edentulous area distal to the canine and photoelastic model was made with PL-2 resin(Measurements Group, Raleigh, USA). Restorations were fabricated in two crown lengths: 9, 13 mm. For non-splinted restorations, individual crowns were fabricated on three custom-milled titanium abutments. After the units were cemented, 4 levels of interproximal contact tightness were evaluated: open, ideal($8{\mu}m$ shim stock drags without tearing), medium($40{\mu}m$), and heavy($80{\mu}m$). For splinted restorations, 3-unit fixed partial dentures were fabricated. This study was examined under simulated non-loaded and loaded conditions(6.8 kg). Photoelastic stress analysis was carried out to measure the fringe order around the implant supporting structure. Results: 1. When restorations were not splinted, the more interproximal contact tightness was increased among the three implants, the more stress was shown in the cervical region of each implant. When crown length was increased, stresses tended to increase in the apex of implants but there were little differences in stress fringes. 2. When nonsplinted restorations were loaded on the first or third implant, stresses were increased in the apex and cervical region of loaded implant. Regardless of interproximal contact tightness level, stresses were not distributed among the three implants. But with tighter interproximal contact, stresses were increased in the cervical region of loaded first or third implant. 3. When the nonsplinted restorations were not loaded, there were little stresses on the supporting structure of implants, but low level stresses were shown in the splinted restorations even after sectioning and soldering. 4. With splinted restorations, there were little differences in stresses between different crown lengths. When splinted restorations were loaded, stresses were increased slightly on the loaded implant, but relatively even stress distribution occurred among the three implants. Conclusions: Splinting the crowns of adjacent implants is recommended for Endopore implants under the overloading situation.

Effects of occlusal load on the stress distribution of four cavity configurations of noncarious cervical lesions: A three-dimensional finite element analysis study (네 가지 형태의 비우식성 치경부 병소의 3차원 유한요소법적 응력분석)

  • Jeon, Sang-Je;Park, Jeong-Kil;Kim, Hyeon-Cheol;Woo, Sung-Gwan;Kim, Kwang-Hoon;Son, Kwon;Hur, Bock
    • Restorative Dentistry and Endodontics
    • /
    • v.31 no.5
    • /
    • pp.359-370
    • /
    • 2006
  • The objective of this study was to investigate the effect of excessive occlusal loading on stress distribution on four type of cervical lesion, using a three dimensional finite element analysis (3D FEA). The extracted maxillary second premolar was scanned serially with Micro-CT. The 3D images were processed by 3D-DOCTOR. ANSYS was used to mesh and analyze 3D FE model. Four different lesion configurations representative of the various types observed clinically for teeth were studied. A static point load of 500N was applied to the buccal and lingual cusp (Load A and B). The principal stresses in lesion apex, and vertical sectioned margin of cervical wall were analyzed. The results were as follows 1. The patterns of stress distribution were similar but the magnitude was different in four types of lesion 2. The peak stress was observed at mesial corner and also stresses concentrated at lesion apex. 3. The compressive stress under load A and the tensile stress under load B were dominant stress. 4. Under the load, lesion can be increased and harmful to tooth structure unless restored.

Analysis of Ventricular Electromechanical Characteristics by Lesions in Sudden Myocardial Infraction: Computer Simulation Study (급성 심근경색 병변에 따른 심실의 전기 역학적 특성 분석: 컴퓨터 시뮬레이션 연구)

  • Baek, Dong Geun;Jeong, Da Un;Lim, Ki Moo
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.6
    • /
    • pp.313-320
    • /
    • 2017
  • Myocardial infarction is a disease caused by stenosis of the coronary arteries. The high risk of sudden cardiac death due to myocardial infarction has triggered related researches that have been actively studied so far. However, these studies focused on the clinical results, which are mainly based on observations of symptoms due to infarction through electrocardiograms. Therefore, in this study, we tried to analyze the behavior of heart according to the position and volume of infarction lesion through the computer simulation study using three dimensional ventricular models. In order to implement infarction, commercial software was used to simulate cell necrosis due to blockage of a specific coronary. In addition, the conduction block due to infarction was mimicked by reducing the electrical conduction in the infarcted area, which was 100 times less than the electrical conduction of the whole ventricular lattice implemented by the finite element analysis method. Thus, this study classified the infarcted cases into the upper, middle, lower, and apex according to lattice data of eight different infraction areas. In other words, we assumed that myocardial infarction would have inherent electro-dynamic characteristics depending on the location and extent, and analyzed the ventricular electromechanical responses for infarction lesions using a three dimensional cardiac physiome model. The results showed that the volume of infarction did not directly affect the cardiac responses, but the location of the infarction lesions could influence the ventricular pumping efficiency. These suggest that the occlusion of specific coronary arteries may have a fatal effect on the decline in ventricular performance. In conclusion, although location of myocardial infarction lesions is considered to be an important variable to be considered clinically rather than lesion size, quantitative predictions should be made more in the future considering physiological factors such as lesion location and direction of myocardial fiber at that location.

Wave propagation in a concrete filled steel tubular column due to transient impact load

  • Ding, Xuanming;Fan, Yuming;Kong, Gangqiang;Zheng, Changjie
    • Steel and Composite Structures
    • /
    • v.17 no.6
    • /
    • pp.891-906
    • /
    • 2014
  • This study aims to present a three dimensional finite element model to investigate the wave propagation in a concrete filled steel tubular column (CFSC) due to transient impact load. Both the concrete and steel are regarded as linear elastic material. The impact load is simulated by a semi sinusoidal impulse. Besides the CFSC models, a concrete column (CC) model is established for comparing under the same loading condition. The propagation characteristics of the transient waves in CFSC are analyzed in detail. The results show that at the intial stage of the wave propagation, the velocity waves in CFSC are almost the same as those in CC before they arrive at the steel tube. When the waves reach the column side, the velocity responses of CFSC are different from those of CC and the difference is more and more obvious as the waves travel down along the column shaft. The travel distance of the wave front in CFSC is farther than that in CC at the same time. For different wave speeds in steel and concrete material, the wave front in CFSC presents an arch shape, the apex of which locates at the center of the column. Differently, the wave front in CC presents a plane surface. Three dimensional effects on top of CFSC are obvious, therefore, the peak value and arrival time of incident wave crests have great difference at different locations in the radial direction. High-frequency waves on the waveforms are observed. The time difference between incident and reflected wave peaks decreases significantly with r/R when r/R < 0.6, however, it almost keeps constant when $r/R{\geq}0.6$. The time duration between incident and reflected waves calculated by 3D FEM is approximately equal to that calculated by 1D wave theory when r/R is about 2/3.

Detecting the Prostate Boundary with Gabor Texture Features Average Shape Model of TRUS Prostate Image (TRUS 전립선 영상에서 가버 텍스처 특징 추출과 평균형상모델을 적용한 전립선 경계 검출)

  • Kim, Hee Min;Hong, Seok Won;Seo, Yeong Geon;Kim, Sang Bok
    • Journal of Digital Contents Society
    • /
    • v.16 no.5
    • /
    • pp.717-725
    • /
    • 2015
  • Prostate images have been used in the diagnosis of prostate using TRUS images being relatively cheap. Ultrasound images are recorded with 3 dimension and one diagnostic exam is made with a number of the images. A doctor can see 2 dimensional images on the monitor sequentially and 3 dimensional ones to diagnose a disease. To display the images, 2-d images are used with raw 2-d ones, but 3-d images need to be segmented by the prostates and their backgrounds to be seen from different angles and with cut images of inner side. Especially on detecting the boundary, the ones in the middle of all images are easy to find the boundary but the base and apex of the images are hard to do it since there are lots of uncertain boundary. So, in this paper we propose the method that applies an average shape model and detects the boundary, and shows its superiority compared to the existing methods with experiments.

Conical Path Generation Technique for Ball Bar Measurement Using Simultaneous 5-Axis Motion Control (5 축 동시 구동을 통한 볼바 측정용 원추형 경로 생성 방법)

  • Lee, Dong-Mok;Lee, Jae-Chang;Yang, Seung-Han
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.1
    • /
    • pp.97-103
    • /
    • 2013
  • This study proposes a path generation technique for simultaneous five-axis driving for ball bar measurement, which is equivalent to cone frustum machining as mentioned in the NAS979 standard. The technique is generalized for a 3D circular path, and it is applicable to all machine tools regardless of their structural configurations. A mathematical machine input model that consists of a five-axis machine tool, ball-bar measurement and conical path information as inputs is presented for easy NC code generation, simulation for various test conditions, and a measurement test. The movement range of rotary axes, which depends on various conditions, is mathematically analyzed based on the proposed conical path model. Moreover, the effect of the movement range on various conditions (apex angle and inclination angle, ball bar tilting acceptance angle, offset position of workpiece ball, etc.) is analyzed.

Numerical Analysis of the Beach Stabilization Effect of an Asymmetric Ripple Mat (왜도 된 연흔모양 매트의 해빈 안정화 효과 수치해석)

  • Cho, Yong Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.4
    • /
    • pp.209-220
    • /
    • 2019
  • Even though the scale of hard structures for beach stabilization should carefully be determined such that these structures do not interrupt the great yearly circulation process of beach sediment in which the self-healing ability of natural beach takes places, massive hard structures such as the submerged breakwater of wide-width are frequently deployed as the beach stabilization measures. On this rationale, asymmetric ripple mat by Irie et al. (1994) can be the alternatives for beach stabilization due to its small scale to replace the preferred submerged breaker of wide-width. The effectiveness of asymmetric ripple mat is determined by how effectively the vortices enforced at the contraction part of flow area over the mat traps the sediment moving toward the offshore by the run-down. In order to verify this hypothesis, we carry out the numerical simulations based on the Navier-Stokes equation and the physically-based morphology model. Numerical results show that the asymmetric ripple mat effectively capture the sediment by forced vortex enforced at the apex of asymmetric ripple mat, and bring these trapped sediments back to the beach, which has been regarded to be the driving mechanism of beach stabilization effect of asymmetric ripple mat.

Accuracy of 5-axis precision milling for guided surgical template (가이드 수술용 템플릿을 위한 5축 정밀가공공정의 정확성에 관한 연구)

  • Park, Ji-Man;Yi, Tae-Kyoung;Jung, Je-Kyo;Kim, Yong;Park, Eun-Jin;Han, Chong-Hyun;Koak, Jai-Young;Kim, Seong-Kyun;Heo, Seong-Joo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.48 no.4
    • /
    • pp.294-300
    • /
    • 2010
  • Purpose: The template-guided implant surgery offers several advantages over the traditional approach. The purpose of this study was to evaluate the accuracy of coordinate synchronization procedure with 5-axis milling machine for surgical template fabrication by means of reverse engineering through universal CAD software. Materials and methods: The study was performed on ten edentulous models with imbedded gutta percha stoppings which were hidden under silicon gingival form. The platform for synchordination was formed on the bottom side of models and these casts were imaged in Cone beam CT. Vectors of stoppings were extracted and transferred to those of planned implant on virtual planning software. Depth of milling process was set to the level of one half of stoppings and the coordinate of the data was synchronized to the model image. Synchronization of milling coordinate was done by the conversion process for the platform for the synchordination located on the bottom of the model. The models were fixed on the synchordination plate of 5-axis milling machine and drilling was done as the planned vector and depth based on the synchronized data with twist drill of the same diameter as GP stopping. For the 3D rendering and image merging, the impression tray was set on the conbeam CT and pre- and post- CT acquiring was done with the model fixed on the impression body. The accuracy analysis was done with Solidworks (Dassault systems, Concord, USA) by measuring vector of stopping’s top and bottom centers of experimental model through merging and reverse engineering the planned and post-drilling CT image. Correlations among the parameters were tested by means of Pearson correlation coefficient and calculated with SPSS (release 14.0, SPSS Inc. Chicago, USA) ($\alpha$ = 0.05). Results: Due to the declination, GP remnant on upper half of stoppings was observed for every drilled bores. The deviation between planned image and drilled bore that was reverse engineered was 0.31 (0.15 - 0.42) mm at the entrance, 0.36 (0.24 - 0.51) mm at the apex, and angular deviation was 1.62 (0.54 - 2.27)$^{\circ}$. There was positive correlation between the deviation at the entrance and that at the apex (Pearson Correlation Coefficient = 0.904, P = .013). Conclusion: The coordinate synchronization 5-axis milling procedure has adequate accuracy for the production of the guided surgical template.

Analysis of stress distribution of tooth restored with metal-ceramic crown covering abfraction lesion according to its finish line location under occlusal load (금속도재관으로 수복된 Abfraction lesion이 있는 치아에 가해지는 교합력의 응력 분포 분석)

  • Kim, Jee-Hwan;Yoon, Chol-Wook;Kim, Taehyeon;Kim, Han-Sung;Woo, Dae-Gon;Lee, Keun-Woo;Shim, June-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.52 no.4
    • /
    • pp.305-311
    • /
    • 2014
  • Purpose: When the full veneer crown was treated in the tooth with abfraction lesion due to various causes, the prognosis of it may be compromised according to the location of the finish line, but there is few study about the location of its buccal finish line. The purpose of this study was to investigate the effect of location of the finish line of the full veneer crown on stress distribution of the tooth with abfraction lesion. Materials and methods: The two dimensional finite element model was developed to express tooth, surrounding tissue and full veneer crown. The stress distribution under eccentric 144 N occlusal load was analyzed using finite element analysis. The location of finish line was set just at the lower border of the lesion (Group 0), 1 mm (Group 1) and 2 mm (Group 2) below the lower border of the lesion. Results: In the Group 0, von Mises stress was concentrated at the finish line and the apex of the lesion. Also, the stress at the bucal finish line propagated to the lingual side. In the Group 1 and Group 2, stress distribution was similar each other. Stress was concentrated at the apex of lesion, but the stress at the buccal finish line did not propagate to the lingual side. That implied decrease of the possibility of horizontal crown fracture. Conclusion: Full veneer crown alleviated the stress concentrated at the apex of the abfraction lesion, when the finish line of full veneer crown was set below the lower border of abfraction lesion.