DOI QR코드

DOI QR Code

Analysis of stress distribution of tooth restored with metal-ceramic crown covering abfraction lesion according to its finish line location under occlusal load

금속도재관으로 수복된 Abfraction lesion이 있는 치아에 가해지는 교합력의 응력 분포 분석

  • Kim, Jee-Hwan (Department of Prosthodontics, School of Dentistry,Yonsei University) ;
  • Yoon, Chol-Wook (Department of Prosthodontics, School of Dentistry,Yonsei University) ;
  • Kim, Taehyeon (Department of Prosthodontics, School of Dentistry,Yonsei University) ;
  • Kim, Han-Sung (Department of Medical Device Evaluation, Cardiovascular Devices Division, Yonsei University) ;
  • Woo, Dae-Gon (Korea Food and Drug Administration) ;
  • Lee, Keun-Woo (Department of Prosthodontics, School of Dentistry,Yonsei University) ;
  • Shim, June-Sung (Department of Prosthodontics, School of Dentistry,Yonsei University)
  • 김지환 (연세대학교 치과대학 치과보철학교실) ;
  • 윤철욱 (연세대학교 치과대학 치과보철학교실) ;
  • 김태현 (연세대학교 치과대학 치과보철학교실) ;
  • 김한성 (연세대학교 생명공학과) ;
  • 우대곤 (식품의약안전청) ;
  • 이근우 (연세대학교 치과대학 치과보철학교실) ;
  • 심준성 (연세대학교 치과대학 치과보철학교실)
  • Received : 2014.08.20
  • Accepted : 2014.09.26
  • Published : 2014.10.31

Abstract

Purpose: When the full veneer crown was treated in the tooth with abfraction lesion due to various causes, the prognosis of it may be compromised according to the location of the finish line, but there is few study about the location of its buccal finish line. The purpose of this study was to investigate the effect of location of the finish line of the full veneer crown on stress distribution of the tooth with abfraction lesion. Materials and methods: The two dimensional finite element model was developed to express tooth, surrounding tissue and full veneer crown. The stress distribution under eccentric 144 N occlusal load was analyzed using finite element analysis. The location of finish line was set just at the lower border of the lesion (Group 0), 1 mm (Group 1) and 2 mm (Group 2) below the lower border of the lesion. Results: In the Group 0, von Mises stress was concentrated at the finish line and the apex of the lesion. Also, the stress at the bucal finish line propagated to the lingual side. In the Group 1 and Group 2, stress distribution was similar each other. Stress was concentrated at the apex of lesion, but the stress at the buccal finish line did not propagate to the lingual side. That implied decrease of the possibility of horizontal crown fracture. Conclusion: Full veneer crown alleviated the stress concentrated at the apex of the abfraction lesion, when the finish line of full veneer crown was set below the lower border of abfraction lesion.

목적: 다양한 원인으로 발생된 Abfraction 병소가 있는 치아를 금속도재관으로 수복 할 경우, 변연의 위치에 따라 예후가 다양해질 수 있다. 수복물의 장기적 성공을 검증하기 위해서는 응력분포의 분석이 필요하지만 금속도재관이 abfraction 병소의 적응증인 경우 금속도재관이 응력 분포에 미치는 영향을 밝히는 연구는 아직 없다. 본 연구의 목적은 abfraction 병소가 있는 치아를 수복하는 금속도재관이 바람직한 응력 분포를 나타낼 수 있는 조건을 알아 보고자 함이다. 재료 및 방법: 치아, 주위 조직과 금속 도재관의 외형을 반영한 2차원 유한 요소모델을 제작하고 144 N의 편심 교합력 하에서의 응력분포를 유한요소 분석법으로 분석하였다. 금속 도재관의 변연 위치를 쐐기모양의 결손부의 하연에(Group 0), 그리고 결손부의 하연보다 1 mm 하방(Group 1)과 2mm 하방(Group2)에 위치시켰다. 결과: Group 0에서 von Mises stress는 금속 도재관의 변연과 결손부의 첨부에 집중 되었고 협측 변연의 응력은 설측 부위로 분포되었다. Group 1과 Group 2에서의 응력분포양상은 비슷하게 나타났다. 응력은 결손부의 첨부에 집중되지만 협측과 설측의 응력띠는 서로 분리된 양상으로 나타났다. 결론: 금속도재관의 변연을 Abfraction 병소의 하연에 설정할 경우, 금속도재관은 Abfraction 병소의 첨부에 응력을 집중시킨다.

Keywords

References

  1. Grippo JO. Abfractions: a new classification of hard tissue lesions of teeth. J Esthet Dent 1991;3:14-9. https://doi.org/10.1111/j.1708-8240.1991.tb00799.x
  2. Lee WC, Eakle WS. Possible role of tensile stress in the etiology of cervical erosive lesions of teeth. J Prosthet Dent 1984;52:374-80. https://doi.org/10.1016/0022-3913(84)90448-7
  3. Rees JS. The effect of variation in occlusal loading on the development of abfraction lesions: a finite element study. J Oral Rehabil 2002;29:188-93. https://doi.org/10.1046/j.1365-2842.2002.00836.x
  4. Francisconi LF, Graeff MS, Martins Lde M, Franco EB, Mondelli RF, Francisconi PA, Pereira JC. The effects of occlusal loading on the margins of cervical restorations. J Am Dent Assoc 2009;140:1275-82. https://doi.org/10.14219/jada.archive.2009.0051
  5. Ichim I, Schmidlin PR, Kieser JA, Swain MV. Mechanical evaluation of cervical glass-ionomer restorations: 3D finite element study. J Dent 2007;35:28-35. https://doi.org/10.1016/j.jdent.2006.04.003
  6. Grippo JO. Noncarious cervical lesions: the decision to ignore or restore. J Esthet Dent 1992;4:55-64. https://doi.org/10.1111/j.1708-8240.1992.tb00721.x
  7. Rosenstiel SF, Land MF, Fujimoto J. Contemporary fixed prosthodontics. 3rd ed. St. Louis; Mosby; 2001:xi, p. 868.
  8. Rubin C, Krishnamurthy N, Capilouto E, Yi H. Stress analysis of the human tooth using a three-dimensional finite element model. J Dent Res 1983;62:82-6. https://doi.org/10.1177/00220345830620021701
  9. Rees JS, Jacobsen PH. Modelling the effects of enamel anisotropy with the finite element method. J Oral Rehabil 1995;22:451-4. https://doi.org/10.1111/j.1365-2842.1995.tb00800.x
  10. Yaman SD, Alacam T, Yaman Y. Analysis of stress distribution in a maxillary central incisor subjected to various post and core applications. J Endod 1998;24:107-11. https://doi.org/10.1016/S0099-2399(98)80087-3
  11. Versluis A, Douglas WH, Cross M, Sakaguchi RL. Does an incremental filling technique reduce polymerization shrinkage stresses? J Dent Res 1996;75:871-8. https://doi.org/10.1177/00220345960750030301
  12. Palamara D, Palamara JE, Tyas MJ, Messer HH. Strain patterns in cervical enamel of teeth subjected to occlusal loading. Dent Mater 2000;16:412-9. https://doi.org/10.1016/S0109-5641(00)00036-1
  13. Sorensen JA, Engelman MJ. Ferrule design and fracture resistance of endodontically treated teeth. J Prosthet Dent 1990;63:529-36. https://doi.org/10.1016/0022-3913(90)90070-S
  14. Rees JS, Jacobsen PH. Elastic modulus of the periodontal ligament. Biomaterials 1997;18:995-9. https://doi.org/10.1016/S0142-9612(97)00021-5
  15. Vincent JFV. Structural biomaterials. Rev. ed. Princeton, NJ; Princeton University Press 1990:xii, p. 244.
  16. Lewinstein I, Banks-Sills L, Eliasi R. Finite element analysis of a new system (IL) for supporting an implant-retained cantilever prosthesis. Int J Oral Maxillofac Implants 1995;10:355-66.