• 제목/요약/키워드: AOD prediction

검색결과 7건 처리시간 0.11초

Aerosol optical depth prediction based on dimension reduction methods

  • Jungkyun Lee;Yaeji Lim
    • Communications for Statistical Applications and Methods
    • /
    • 제31권5호
    • /
    • pp.521-533
    • /
    • 2024
  • As the concentration of fine dust has recently increased, numerous related studies are being conducted to address this issue. Aerosol optical depth (AOD) is a vital atmospheric parameter for measuring the optical properties of aerosols in the atmosphere, providing crucial information related to fine dust. In this paper, we apply three dimension reduction methods, nonnegative matrix factorization (NMF), empirical orthogonal functions (EOF) analysis and independent component analysis (ICA), to AOD data to analyze the patterns of fine dust in the East Asia region. Through a comparison of three dimension reduction methods, we observe that some patterns are observed in all three method, while some information are only extracted in a specific method. Additionally, we forecast AOD levels based on three methods, and compare the predictive performance of the three methodologies.

MODIS AOD를 이용한 지상 시정 산출 (Estimation of surface visibility using MODIS AOD)

  • 박준영;권태영;이재용
    • 대한원격탐사학회지
    • /
    • 제33권2호
    • /
    • pp.171-187
    • /
    • 2017
  • 이 연구에서는 위성의 AOD를 이용하여 지면 시정을 산출하는 방법을 제시했다. 시정을 산출하기 위해서는 에어로졸의 분포 고도가 필요하다. 이 연구에서는 두 가지 에어로졸의 분포 고도를 이용하여 시정을 산출하였다. 하나는 대기층이 분리되어 나타나는 경우로 물리적으로 아래와 위층이 완전히 분리되어 있는 경우를 의미한다. 이 경우 분리된 층의 상한 고도를 에어로졸 층 고도(Aerosol Layer Height: ALH)로 가정하였으며 상대습도의 연직분포에서 뚜렷한 최소값이 나타나는 고도로부터 찾았다. 다른 하나는 분리된 층이 존재하지 않은 경우를 의미한다. 이 경우 행성 경계층 고도(Planetary Boundary Layer Height: PBLH)를 사용하였다. 이 두 고도는 RDAPS 예측장 자료로부터 산출되었다. 따라서 시정은 MODIS AOD와 PBLH/ALH로부터 추정하였다. 여기서 ALH를 사용하는 경우 Koschmieder's Law를 이용하였으며 PBLH를 사용하는 경우 경험적 관계식을 이용하였다. 추정 시정을 검증하기 위해 2015~2016년 봄철에 목측 9개와 PWD22 17개 지점의 시정 자료를 사용하였다. 추정시정의 검증에서 검증 값은 지점, 년도, 오전(Terra)/오후(Aqua)에 따라 상당한 차이가 있었다. 이 중 2016년 Terra위성을 이용한 중서부 지역 지점들의 검증은 가장 좋은 결과를 보였다. 검증 결과를 요약하면 상관계수는 0.65보다 높았고, 낮은 시정에서 RMSE는 3.62 km, ME는 2.29 km 보다 낮았다. 그리고 POD는 0.65보다 높았고, FAR은 0.5보다 낮았다. 이러한 검증 결과는 낮은 시정의 데이터 수가 많을수록 좋아졌다.

Prediction of Daily PM10 Concentration for Air Korea Stations Using Artificial Intelligence with LDAPS Weather Data, MODIS AOD, and Chinese Air Quality Data

  • Jeong, Yemin;Youn, Youjeong;Cho, Subin;Kim, Seoyeon;Huh, Morang;Lee, Yangwon
    • 대한원격탐사학회지
    • /
    • 제36권4호
    • /
    • pp.573-586
    • /
    • 2020
  • PM (particulate matter) is of interest to everyone because it can have adverse effects on human health by the infiltration from respiratory to internal organs. To date, many studies have made efforts for the prediction of PM10 and PM2.5 concentrations. Unlike previous studies, we conducted the prediction of tomorrow's PM10 concentration for the Air Korea stations using Chinese PM10 data in addition to the satellite AOD and weather variables. We constructed 230,639 matchups from the raw data over 3 million and built an RF (random forest) model from the matchups to cope with the complexity and nonlinearity. The validation statistics from the blind test showed excellent accuracy with the RMSE (root mean square error) of 9.905 ㎍/㎥ and the CC (correlation coefficient) of 0.918. Moreover, our prediction model showed a stable performance without the dependency on seasons or the degree of PM10 concentration. However, part of coastal areas had a relatively low accuracy, which implies that a dedicated model for coastal areas will be necessary. Additional input variables such as wind direction, precipitation, and air stability should also be incorporated into the prediction model as future work.

앙상블 기반 모델을 이용한 서울시 PM2.5 농도 예측 및 분석 (Prediction and Analysis of PM2.5 Concentration in Seoul Using Ensemble-based Model)

  • 류민지;손상훈;김진수
    • 대한원격탐사학회지
    • /
    • 제38권6_1호
    • /
    • pp.1191-1205
    • /
    • 2022
  • 복잡하고 광범위한 원인을 가진 대기오염물질 중 particulate matter (PM)은 입자의 크기에 따라 분류된다. 그 중 PM2.5는 그 크기가 매우 작아 사람이 흡입하면 인간의 호흡기나 심혈관에 질병을 유발할 수 있다. 이러한 위험에 대비하기 위해서는 국가 중심의 관리와 사전에 예방할 수 있는 모니터링 및 예측이 중요하다. 본 연구는 고농도 미세먼지의 발생이 잦은 서울시의 PM2.5를 local data assimilation and prediction system (LDAPS) 기상 관련 인자 15가지와 aerosol optical depth (AOD), 화학인자 4가지를 독립변수로 하여 앙상블 모델 두 가지 random forest (RF)와 extreme gradient boosting (XGB)로 예측하고자 하였다. 예측에 사용된 두 모델의 성능 평가와 인자 중요도 평가를 수행하였으며, 계절별 모델 분석도 수행하였다. 예측 정확도 결과, RF가 R2 = 0.85, XGB가 R2 = 0.91의 높은 예측 정확도를 보이며 XGB가 RF보다 PM2.5 예측에 적합한 모델임을 확인하였다. 계절별 모델 분석 결과, 봄에 농도가 높은 관측 값과 비교하여 예측 수행이 잘 되었다고 할 수 있다. 본 연구는 다양한 인자를 이용하여 서울시의 PM2.5를 예측하였고, 좋은 성능을 보이는 앙상블 기반의 PM2.5 예측 모델을 구축하였다.

인공지능을 이용한 수도권 학교 미세먼지 취약성 평가: Part II - 학교 미세먼지 범주화 (Vulnerability Assessment for Fine Particulate Matter (PM2.5) in the Schools of the Seoul Metropolitan Area, Korea: Part II - Vulnerability Assessment for PM2.5 in the Schools)

  • 손상훈;김진수
    • 대한원격탐사학회지
    • /
    • 제37권6_2호
    • /
    • pp.1891-1900
    • /
    • 2021
  • 직경 2.5 ㎛ 이하인 초미세먼지는 급격한 도시화와 인구 증가로 인해 대도시에서 많이 발생하며, 유아 및 청소년기는 성인에 비해 초미세먼지에 취약하고 만성 질환으로 이어질 가능성이 높다. 특히 대부분의 청소년들은 학교에서 가장 많은 시간을 보내고 있으며, 다양한 이유에 의해 실외에서 발생한 초미세먼지가 실내로 유입된다. 본 연구는 외부 요인에 의해 발생하는 학교 초미세먼지를 예측하고 학교별 초미세먼지 범주화를 수행하였다. 10-fold cross validation과 grid-search method를 적용한 random forest (RF) 모델에 화학과 기상 인자, 위성 기반의 aerosol optical depth (AOD)를 입력 자료로 하여 학교 초미세먼지를 예측하고 정확도 평가를 위해 4가지 통계 지표를 이용하였다. 학교 미세먼지 범주화를 위해 6가지 유형을 가진 느슨한 기준과 엄격한 기준을 정의하였으며, 범주화 결과 느슨한 기준의 경우 유형 2와 3에, 엄격한 기준의 경우 유형 3과 4에 가장 많은 학교가 포함되었다.

부스팅 기반 기계학습기법을 이용한 지상 미세먼지 농도 산출 (Estimation of Ground-level PM10 and PM2.5 Concentrations Using Boosting-based Machine Learning from Satellite and Numerical Weather Prediction Data)

  • 박서희;김미애;임정호
    • 대한원격탐사학회지
    • /
    • 제37권2호
    • /
    • pp.321-335
    • /
    • 2021
  • 미세먼지 (PM10) 및 초미세먼지 (PM2.5)는 인체에 흡수 가능하여 호흡기 질환 및 심장 질환과 같이 인체건강에 악영향을 미치며, 심각할 경우 조기 사망에 영향을 줄 수 있다. 전 세계적으로 현장관측기반의 모니터링을 수행하고 있지만 미 관측지역에 대한 대기질 분포의 공간적인 한계점이 존재하여 보다 광범위한 지역에 대한 지속적이고 정확한 모니터링이 필요한 상황이다. 위성기반 에어로졸 정보를 사용함으로써 이러한 현장 관측자료의 한계점을 극복할 수 있다. 따라서 본 연구에서는 다양한 위성 및 모델자료를 활용하여 2019년도에 대해 한 시간 단위의 지상 PM10 및 PM2.5 농도를 추정하였다. GOCI 위성의 관측영역을 포함하는 동아시아 지역에 대해 트리 기반 앙상블 방법을 사용하는 Boosting 기법인 GBRTs (Gradient Boosted Regression Trees)와 LightGBM (Light Gradient Boosting Machine)을 활용하여 모델을 구축하였다. 또한, 기상변수 및 토지피복변수의 사용유무에 따른 모델의 성능을 비교하기 위해 두 가지 festure set으로 나누어 테스트하였다. 두 기법 모두 주요 변수인 AOD (Aerosol Optical Depth), SSA (Single Scattering Albedo), DEM (Digital Eelevation Model), DOY (Day of Year), HOD (Hour of Day)와 기상변수 및 토지피복변수를 함께 사용한 Feature set 1을 사용하였을 때 높은 정확도를 보였다. Feature set 1에 대해 GBRT 모델이 LightGBM에 비해서약 10%의 정확도 향상을 보였다. 가장 정확도가 높았던 기상 및 지표면 변수를 포함한 Feature set1을 사용한 GBRT기반 모델을 최종모델로 선정하였으며 (PM10: R2 = 0.82 nRMSE = 34.9%, PM2.5: R2 = 0.75 nRMSE = 35.6%), 계절별 및 연평균 PM10 및 PM2.5 농도에 대한 공간적인 분포를 확인해본 결과, 현장관측자료와 비슷한 공간 분포를 보였으며, 국가별 농도 분포와 계절에 따른 시계열 농도 패턴을 잘 모의하였다.

인공지능을 이용한 수도권 학교 미세먼지 취약성 평가: Part I - 미세먼지 예측 모델링 (Vulnerability Assessment for Fine Particulate Matter (PM2.5) in the Schools of the Seoul Metropolitan Area, Korea: Part I - Predicting Daily PM2.5 Concentrations)

  • 손상훈;김진수
    • 대한원격탐사학회지
    • /
    • 제37권6_2호
    • /
    • pp.1881-1890
    • /
    • 2021
  • 미세먼지는 인체에는 물론 생태계, 날씨 등에도 많은 영향을 끼치며, 인구와 건물, 차량 등이 밀집된 대도시에서의 미세먼지의 예측과 모니터링은 중요하다. 특히 자동차, 연소 등에서 발생하는 PM2.5 농도는 독성 물질을 포함할 수 있어 체계적인 관리가 필요하다. 따라서 본 연구는 화학 인자, 위성 기반의 aerosol optical depth (AOD), 기상 인자 등을 입력 자료로 하여 수도권PM2.5 농도를 예측하고자 한다. PM2.5 농도 예측을 위해 기계 학습 모델 중 PM 농도 예측에 우수한 성능을 보이는 random forest (RF) 모델을 선정하였으며, 모델 평가를 위해 통계 지표인 R2, RMSE, MAE, MAPE를 산출하였다. RF 모델의 모델 정확도는 R2, RMSE, MAE, MAPE는 각각 0.97, 3.09, 2.18, 13.31로 나타났으며, 예측 정확도는 각각 0.82, 6.03, 4.36, 25.79로 본 연구에서 사용한 인자들을 이용하여 PM2.5를 예측 시 높은 정확도와 상관성을 나타내었다. 따라서 향후 학교 미세먼지 예측 및 범주화를 위해 본 연구에서 사용한 인자들을 RF 모델에 적용하였을 때 신뢰할만한 결과를 도출할 수 있을 것으로 기대된다.