• 제목/요약/키워드: ANSYS simulation

검색결과 444건 처리시간 0.024초

Design and Implementation of Internal Multiband Loop Embedded Monopole Antenna for Mobile Handset

  • Jung, Pil Hyun;Yang, Cheol Yong;Lee, Seong Ha;Yang, Woon Geun
    • 전기전자학회논문지
    • /
    • 제17권4호
    • /
    • pp.484-491
    • /
    • 2013
  • In this paper, we proposed an internal multiband loop embedded monopole antenna for mobile handset that could be used for smart phones. The proposed antenna has a volume of 40 mm(W) ${\times}$ 15 mm(L) ${\times}$ 5 mm(H), ground plane size is 40 mm(W) ${\times}$ 80 mm(L), and covers the GSM900 (Global System for Mobile communications : 880-960 MHz), K-PCS (Korea-Personal Communications Service : 1750-1870 MHz), US-PCS (US Personal Communications Service : 1850-1990 MHz), WCDMA (Wideband Code Division Multiple Access : 1920-2170 MHz), Wibro (2300-2390 MHz), Bluetooth (2400-2483 MHz) and WLAN (Wireless Local Area Network : 2400-2483.5 MHz) bands for VSWR (voltage standing wave ration) less than 3. The proposed loop adding design at middle section of longest branch showed wide impedance bandwidth for the lowest resonance frequency band. The proposed antenna have a lowest resonance frequency band from 738 MHz to 1075 MHz for S11 value of -6dB. A HFSS (High Frequency Structure Simulator) of the Ansys Corporation based on a finite element method is employed to analyze the proposed antenna in the design process and to compare the simulation and experimental results.

승용차량 리어도어의 강도 및 피로에 대한 CAE해석 (CAE Analysis on Strength and Fatigue of Rear Door of Passenger Car)

  • 고종현;강대민
    • 한국기계가공학회지
    • /
    • 제13권3호
    • /
    • pp.63-69
    • /
    • 2014
  • This paper studies the strength, fatigue sensitivity, safety factor and lifetimes by means of structural and fatigue analyses of different models of rear doors upon the opening of doors and windows leading to severe fatigue fractures of the window motor components of rear doors. The simulation models were a standard model and other models. The other models, which are denoted here as models I and II, were modified versions of the standard model, with a rib of 3mm and a thickness of 2mm as compared to the standard model. The door was modelled with CATIA V5 and analyzed with the ANSYS program. The material of the rear door was cold rolled steel (DDQ). From the study results, the standard model and model I were confirmed to be less safe upon the opening of the door as compared to the opening of a window in terms of fatigue, but model II was found to be safe for both door and window openings.

Contact analysis of spherical ball and a deformable flat model with the effect of tangent modulus

  • Sathish Gandhi, V.C.;Ramesh, S.;Kumaravelan, R.;Thanmanaselvi, M.
    • Structural Engineering and Mechanics
    • /
    • 제44권1호
    • /
    • pp.61-72
    • /
    • 2012
  • The paper is on contact analysis of a spherical ball with a deformable flat, considering the effect of tangent modulus on the contact parameters of a non-adhesive frictionless elastic-plastic contact. The contact analysis of this model has been carried out using analysis software Ansys and Abaqus. The contact parameters such as area of contact between two consecutive steps, volume of bulged material are evaluated from the formulated equations. The effect of the tangent modulus is considered for determining these parameters. The tangent modulus are accounted between 0.1E and 0.5E of materials E/Y value greater than 500 and less than 1750. Result shows that upto an optimal tangent modulus values the elastic core push up to the free surface in the flat. The simulation is also carried out in Abaqus and result provide evidence for the volume of bulged material in the contact region move up and flow into the free surface of the flat from the contact edge between the ball and flat. The strain energy of the whole model is varied between 20 to 40 percentage of the stipulated time for analysis.

Simulation-based fatigue life assessment of a mercantile vessel

  • Ertas, Ahmet H.;Yilmaz, Ahmet F.
    • Structural Engineering and Mechanics
    • /
    • 제50권6호
    • /
    • pp.835-852
    • /
    • 2014
  • Despite the availability of other transport methods such as land and air transportations, marine transportation is the most preferred and widely used transportation method in the world because of its economical advantages. In service, ships experience cyclic loading. Hence, it can be said that fatigue fracture, which occurs due to cyclic loading, is one of the most critical failure modes for vessels. Accordingly, this makes fatigue failure prevention an important design requirement in naval architecture. In general, a ship structure contains many structural components. Because of this, structural modeling typically relies on Finite Element Analysis (FEA) techniques. It is possible to increase fatigue performance of the ship structures by using FEA in computer aided engineering environment. Even if literature papers as well as rules of classification societies are available to assess effect of fatigue cracks onto the whole ship structure, analytical studies are relatively scarce because of the difficulties of modeling the whole structure and obtaining reliable fatigue life predictions. As a consequence, the objective of this study is to improve fatigue strength of a mercantile vessel against fatigue loads via analytical method. For this purpose, the fatigue life of the mercantile vessel has been investigated. Two different type of fatigue assessment models, namely Coffin-Manson and Morrow Mean stress approaches, were used and the results were compared. In order to accurately determine the fatigue life of the ship, a nonlinear finite element analysis was conducted considering plastic deformations and residual stresses. The results of this study will provide the designer with some guidelines in designing mercantile vessels.

임펠러 입출구각에 따른 양흡입 원심송풍기 성능특성 (Performance Characteristics of Double-Inlet Centrifugal Blower According to Inlet and Outlet Angles of an Impeller)

  • 이종성;장춘만
    • 한국수소및신에너지학회논문집
    • /
    • 제25권2호
    • /
    • pp.191-199
    • /
    • 2014
  • Effects of design variables on the performance of a double-inlet centrifugal blower have been analyzed based on the three-dimensional flow analysis. Two design variables, blade inlet and outlet angles, are introduced to enhance a blower performance. General analysis code, ANSYS-CFX13, is employed to analyze internal flow and a blower performance. SST turbulence model is employed to estimate the eddy viscosity. Throughout the shape optimization of an impeller at the design flow condition, the blower efficiency and pressure are successfully increased by 4.7 and 1.02 percent compared to reference one. It is noted that separated flow observed near cut-off region can be reduced by optimal design of blade angles, which results in stable flow pattern in the blade passage and increase of a blower performance. The stable flow at the impeller also makes good effects at the outlet of a volute casing.

RPI모형을 이용한 ULPU-V시험의 수치모사 (Numerical Simulation on the ULPU-V Experiments using RPI Model)

  • 서정수;하희운
    • 한국안전학회지
    • /
    • 제32권2호
    • /
    • pp.147-152
    • /
    • 2017
  • The external reactor vessel cooling (ERVC) is well known strategy to mitigate a severe accident at which nuclear fuel inside the reactor vessel is molten. In order to compare the heat removal capacity of ERVC between the nuclear reactor designs quantitatively, numerical method is often used. However, the study for ERVC using computational fluid dynamics (CFD) is still quite scarce. As a validation study on the numerical prediction for ERVC using CFD, the subcooled boiling flow and natural circulation of coolant at the ULPU-V experiment was simulated. The commercially available CFD software ANSYS-CFX was used. Shear stress transport (SST) model and RPI model were used for turbulence closure and wall-boiling, respectively. The averaged flow velocities in the downcomer and the baffle entry under the reactor vessel lower plenum are in good agreement with the available experimental data and recent computational results. Steam generated from the heated wall condenses rapidly and coolant flows maintains single-phase flow until coolant boils again by flashing process due to the decrease of saturation temperature induced by higher elevation. Hence, the flow rate of coolant natural circulation does not vary significantly with the change of heat flux applied at the reactor vessel, which is also consistent with the previous literatures.

딤플 튜브형 EGR Cooler 구조건전성 및 열효율 평가 (Evaluation of Structural Integrity and Heat Exchange Efficiency for Dimpled Tube Type EGR Cooler)

  • 서영호;이현민;박중원;구태완;김정;강범수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.554-559
    • /
    • 2008
  • Most of vehicle manufacturers have applied exhaust gas recirculation (EGR) system to the development of diesel engines in order to obtain the high thermal efficiency without $NO_X$ and Particulate Matter (PM) emitted from the engine. EGR system, which reflow a cooled exhaust gas from vehicles burning diesel as fuel to a combustion chamber of engine, has been used to solve this problem. In order to confirm the safety of the EGR system, finite element analysis was carried out. The safety of EGR system against temperature variation in the shell and tubes was evaluated through the thermal and structural analysis, and the modal analysis using ANSYS was also performed. Finally, the performance of EGR system was verified through the experiment and numerical simulation using effectiveness-NTU method. Program for the estimation of the heat exchange efficiency of the EGR system with regard to the dimpled tube shape was developed.

  • PDF

연 풍력시스템의 회전속도 측정 및 발전기 시스템에 적용 가능한 영구자석 발전기 설계에 관한 연구 (Study on Rotating Speed of Kite Wind Turbine System and Design of PM Generator)

  • 신유정;김수현;김진호
    • 한국기계가공학회지
    • /
    • 제15권4호
    • /
    • pp.141-147
    • /
    • 2016
  • A direct PM generator has the effect of reducing the mechanical noise and ease of maintenance by eliminating a number of power transmission components. In addition, wind turbines operating at low speed with the advantages of high output, high efficiency, and small size. The generator was designed as a small direct-drive PM generator that can be applied to a kite even at low wind speeds. The RPM (Revolutions Per Minute) of the reel was measured in two ways using a cadence/speedometer sensor and a tachometer while the actual kite. The RPM derived from the experiment was applied to the simulation on the designed generator. The no-load characteristic analysis for the magnetic fields produced for the permanent magnet generator by a permanent magnet and stator winding currents is achieved using a 2D coordinate system. A commercial electromagnetic analysis program, ANSYS Maxwell, was used to model the electromagnetic dynamics.

반도체 공정을 고려한 유한요소해석에 의한 MEMS 압전 작동기의 동특성 해석 (Development of Finite Element Model for Dynamic Characteristics of MEMS Piezo Actuator in Consideration of Semiconductor Process)

  • 김동운;송종형;안승도;우기석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.454-459
    • /
    • 2013
  • For the purpose of rapid development and superior design quality assurance, sophisticated finite element model for SOM(Spatial Optical Modulator) piezo actuator of MOEMS device has been developed and evaluated for the accuracy of dynamics and residual stress analysis. Parametric finite element model is constructed using ANSYS APDL language to increase the design and analysis performance. Geometric dimensions, mechanical material properties for each thin film layer are input parameters of FE model and residual stresses in all thin film layers are simulated by thermal expansion method with psedu process temperature. $6^{th}$ mask design samples are manufactured and $1^{st}$ natural frequency and 10V PZT driving displacement are measured with LDV. The results of experiment are compared with those of the simulation and validate the good agreement in $1^{st}$ natural frequency within 5% error. But large error over 30% occurred in 10V PZT driving displacement because of insufficient PZT constant $d_{31}$ measurement technology.

  • PDF

KHP Main & Nose Wheel 개발을 위한 구조해석 (Structure Analysis of KHP Main & Nose Wheel)

  • 김용환;이세욱;주영찬;지종호;조진수
    • 한국항공우주학회지
    • /
    • 제40권4호
    • /
    • pp.330-335
    • /
    • 2012
  • 본 연구는 KHP(Korean Helicopter Program) main & nose wheel 국산화 개발을 위한 구조해석으로서 상용프로그램인 ANSYS를 사용하여 wheel의 구조적 안정성을 평가하였다. Wheel과 tire의 interface를 고려한 연구로서, Tire의 공기압과 정하중, 반경하중 그리고 복합 하중을 main & nose wheel에 적용하여 응력해석을 수행하였다. 해석결과는 소성변형이 발생하는 항복강도를 고려하여, maximum stress와 항복강도를 비교분석 후 구조적 안정성을 더 높일 수 있는 방안을 제시하였다.