• Title/Summary/Keyword: ANOS (Average Number of Observations to Signal)

Search Result 4, Processing Time 0.017 seconds

Exponentially Weighted Moving Average Chart for High-Yield Processes

  • Kotani, Takayuki;Kusukawa, Etsuko;Ohta, Hiroshi
    • Industrial Engineering and Management Systems
    • /
    • v.4 no.1
    • /
    • pp.75-81
    • /
    • 2005
  • Borror et al. discussed the EWMA(Exponentially Weighted Moving Average) chart to monitor the count of defects which follows the Poisson distribution, referred to the $EWMA_c$ chart, as an alternative Shewhart c chart. In the $EWMA_c$ chart, the Markov chain approach is used to calculate the ARL (Average Run Length). On the other hand, in order to monitor the process fraction defectives P in high-yield processes, Xie et al. presented the CCC(Cumulative Count of Conforming)-r chart of which quality characteristic is the cumulative count of conforming item inspected until observing $r({\geq}2)$ nonconforming items. Furthermore, Ohta and Kusukawa presented the $CS(Confirmation Sample)_{CCC-r}$ chart as an alternative of the CCC-r chart. As a more superior chart in high-yield processes, in this paper we present an $EWMA_{CCC-r}$ chart to detect more sensitively small or moderate shifts in P than the $CS_{CCC-r}$ chart. The proposed $EWMA_{CCC-r}$ chart can be constructed by applying the designing method of the $EWMA_C$ chart to the CCC-r chart. ANOS(Average Number of Observations to Signal) of the proposed chart is compared with that of the $CS_{CCC-r}$ chart through computer simulation. It is demonstrated from numerical examples that the performance of proposed chart is more superior to the $CS_{CCC-r}$ chart.

A Synthetic Exponentially Weighted Moving-average Chart for High-yield Processes

  • Kusukawa, Etsuko;Kotani, Takayuki;Ohta, Hiroshi
    • Industrial Engineering and Management Systems
    • /
    • v.7 no.2
    • /
    • pp.101-112
    • /
    • 2008
  • As charts to monitor the process fraction defectives, P, in the high-yield processes, Mishima et al. (2002) discussed a synthetic chart, the Synthetic CS chart, which integrates the CS (Confirmation Sample)$_{CCC(\text{Cumulative Count of Conforming})-r}$ chart and the CCC-r chart. The Synthetic CS chart is designed to monitor quality characteristics in real-time. Recently, Kotani et al. (2005) presented the EWMA (Exponentially Weighted Moving-Average)$_{CCC-r}$ chart, which considers combining the quality characteristics monitored in the past with one monitored in real-time. In this paper, we present an alternative chart that is more superior to the $EWMA_{CCC-r}$ chart. It is an integration of the $EWMA_{CCC-r}$ chart and the CCC-r chart. In using the proposed chart, the quality characteristic is initially judged as either the in-control state or the out-of-control state, using the lower and upper control limits of the $EWMA_{CCC-r}$ chart. If the process is not judged as the in-control state by the $EWMA_{CCC-r}$ chart, the process is successively judged, using the $EWMA_{CCC-r}$ chart. We compare the ANOS (Average Number of Observations to Signal) of the proposed chart with those of the $EWMA_{CCC-r}$ chart and the Synthetic CS chart. From the numerical experiments, with the small size of inspection items, the proposed chart is the most sensitive to detect especially the small shifts in P among other charts.

Copula modelling for multivariate statistical process control: a review

  • Busababodhin, Piyapatr;Amphanthong, Pimpan
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.6
    • /
    • pp.497-515
    • /
    • 2016
  • Modern processes often monitor more than one quality characteristic that are referred to as multivariate statistical process control (MSPC) procedures. The MSPC is the most rapidly developing sector of statistical process control and increases interest in the simultaneous inspection of several related quality characteristics. Most multivariate detection procedures based on a multi-normality assumptions are independent, but there are many processes that assume non-normality and correlation. Many multivariate control charts have a lack of related joint distribution. Copulas are tool to construct multivariate modelling and formalizing the dependence structure between random variables and applied in several fields. From copula literature review, there are a few copula to apply in MSPC that have multivariate control charts, and represent a successful tool to identify an out-of-control process. This paper presents various types of copulas modelling for the multivariate control chart. The performance measures of the control chart are the average run length (ARL) and the average number of observations to signal (ANOS). Furthermore, a Monte Carlo simulation is shown when the observations were from an exponential distribution.

Performance of CCC-r charts with bootstrap adjusted control limits (붓스트랩에 기초하여 조정한 관리한계를 사용하는 CCC-r 관리도의 성능)

  • Kim, Minji;Lee, Jaeheon
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.4
    • /
    • pp.451-466
    • /
    • 2020
  • CCC-r chart is effective for high-quality processes with a very low fraction nonconforming. The values of process parameters should be estimated from the Phase I sample since they are often not known. However, if the Phase I sample size is not sufficiently large, an estimation error may occur when the parameter is estimated and the practitioner may not achieve the desired in-control performance. Therefore, we adjust the control limits of CCC-r charts using the bootstrap algorithm to improve the in-control performance of charts with smaller sample sizes. The simulation results show that the adjustment with the bootstrap algorithm improves the in-control performance of CCC-r charts by controlling the probability that the in-control average number of observations to signal (ANOS) has a value greater than the desired one.