In recent times, multilevel inverters are given high priority in many large industrial drive applications. However, the reliability of multilevel inverters are mainly affected by the failure of power electronic switches. In this paper, open-switch and short-switch failure of multilevel inverters and its identification using a high performance diagnostic system is discussed. Experimental and simulation studies were carried out on five level cascaded H-Bridge multilevel inverter and its output voltage waveforms were analyzed at different switch fault cases and at different modulation index values. Salient frequency domain features of the output voltage signal were extracted using the discrete wavelet transform multi resolution signal decomposition technique. Real time application of the proposed fault diagnostic system was implemented through the LabVIEW software. Artificial neural network was trained offline using the Matlab software and the resultant network parameters were transferred to LabVIEW real time system. In the proposed system, it is possible to precisely identify the individual faulty switch (may be due to open-switch (or) short-switch failure) of multilevel inverters.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.9
no.7
/
pp.2736-2754
/
2015
Android dominates the mobile operating system market, which stimulates the rapid spread of mobile malware. It is quite challenging to detect mobile malware. System call sequence analysis is widely used to identify malware. However, the malware detection accuracy of existing approaches is not satisfactory since they do not consider correlation of system calls in the sequence. In this paper, we propose a new scheme called Artificial Neural Networks (ANNs) on Co-occurrence Matrices Droid (ANNCMDroid), using co-occurrence matrices to mine correlation of system calls. Our key observation is that correlation of system calls is significantly different between malware and benign software, which can be accurately expressed by co-occurrence matrices, and ANNs can effectively identify anomaly in the co-occurrence matrices. Thus at first we calculate co-occurrence matrices from the system call sequences and then convert them into vectors. Finally, these vectors are fed into ANN to detect malware. We demonstrate the effectiveness of ANNCMDroid by real experiments. Experimental results show that only 4 applications among 594 evaluated benign applications are falsely detected as malware, and only 18 applications among 614 evaluated malicious applications are not detected. As a result, ANNCMDroid achieved an F-Score of 0.981878, which is much higher than other methods.
International Journal of Aeronautical and Space Sciences
/
v.18
no.4
/
pp.651-661
/
2017
A truss-braced wing (TBW) aircraft has recently received increasing attention due to higher aerodynamic efficiency compared to conventional cantilever wing aircraft. For conceptual TBW aircraft design, we developed a propulsion-and-airframe integrated design environment by replacing a semi-empirical turbofan engine model with a thermodynamic cycle-based one built upon the numerical propulsion system simulation (NPSS). The constructed NPSS model benefitted TBW aircraft design study, as it could handle engine installation effects influencing engine fuel efficiency. The NPSS model also contributed to broadening TBW aircraft design space, for it provided turbofan engine design variables involving a technology factor reflecting progress in propulsion technology. To effectively consolidate the NPSS propulsion model with the TBW airframe model, we devised a rapid, approximate substitute of the NPSS model by reduced-order modeling (ROM) to resolve difficulties in model integration. In addition, we formed an artificial neural network (ANN) that associates engine component attributes evaluated by object-oriented weight analysis of turbine engine (WATE++) with engine design variables to determine engine weight and size, both of which bring together the propulsion and airframe system models. Through propulsion-andairframe design space exploration, we optimized TBW aircraft design for fuel saving and revealed that a simple engine model neglecting engine installation effects may overestimate TBW aircraft performance.
Journal of the Korea Academia-Industrial cooperation Society
/
v.12
no.2
/
pp.712-717
/
2011
Option issuers generally utilize Dynamic Delta Hedging(DDH) technique to avoid the risk resulting from continuously changing option value. DDH duplicates payoff of option position by adjusting hedge position according to the delta value from Black-Scholes(BS) model in order to maintain risk neutral state. DDH, however, is not able to guarantee optimal hedging performance because of the weaknesses caused by impractical assumptions inherent in BS model. Therefore, this study presents a methodology for dynamic option hedge using artificial neural network(ANN) to enhance hedging performance and show the superiority of the proposed method using various computational experiments.
Numerous methods have been proposed in predicting formability of sheet metals based on microstructural and macro-scale properties of sheets. However, there are limited number of papers on the optimization problem to increase formability of sheet metals. In the present study, we aim to use novel optimization algorithms in neural networks to maximize the formability of sheet metals based on tensile curve and texture of aluminum sheet metals. In this regard, experimental and numerical evaluations of effects of texture and tensile properties are conducted. The texture effects evaluation is performed using Taylor homogenization method. The data obtained from these evaluations are gathered and utilized to train and validate an artificial neural network (ANN) with different optimization methods. Several optimization method including grey wolf algorithm (GWA), chimp optimization algorithm (ChOA) and whale optimization algorithm (WOA) are engaged in the optimization problems. The results demonstrated that in aluminum alloys the most preferable texture is cube texture for the most formable sheets. On the other hand, slight differences in the tensile behavior of the aluminum sheets in other similar conditions impose no significant decreases in the forming limit diagram under stretch loading conditions.
Jungsoo Eun;Jinsoo Ahn;Minseok Lee;Wooseok Kwak;Jonghwan Lee
Journal of the Semiconductor & Display Technology
/
v.22
no.4
/
pp.179-184
/
2023
We propose the modeling methodology of CMOS inverter made of LTPO TFT using a machine learning. LTPO can achieve advantages of LTPS TFT with high electron mobility as a driving TFT and IGZO TFT with low off-current as a switching TFT. However, since the unified model of both LTPS and IGZO TFTs is still lacking, it is necessary to develop a SPICE-compatible compact model to simulate the LTPO current-voltage characteristics. In this work, a generic framework for combining the existing formula of I-V characteristics with artificial neural network is presented. The weight and bias values of ANN for LTPS and IGZO TFTs is obtained and implemented into PSPICE circuit simulator to predict CMOS inverter. This methodology enables efficient modeling for predicting LTPO TFT circuit characteristics.
Clinicians usually use stethoscopic auscultation for the diagnosis of heart diseases. However, the heart sound signal has varying characteristics due to the noise and/or the conditions of the patients. Also, it is not easy for junior clinicians to find the acoustical differences between different kinds or heart sound signals. which may result in errors in the diagnosis. Thus it will be quite useful for the clinicians to make use of an automatic classification system using signal processing techniques. In this paper, we propose to use hidden Markov models in stead of artificial neural networks which have been conventionally used for the automatic classification of heart sounds. In the experiments classifying heart sound signals. we could see that the proposed methods were quite successful in the classification accuracy.
Kim, Taereem;Joo, Kyungwon;Cho, Wanhee;Heo, Jun-Haeng
Journal of Wetlands Research
/
v.21
no.spc
/
pp.61-68
/
2019
Recently, climate indices represented by quantifying atmospheric-ocean circulation patterns have been widely used to predict hydrologic variables for considering long-term climate variability. Hydrologic forecasting models based on artificial neural networks have been developed to provide accurate and stable forecasting performance. Forecasts of hydrologic variables considering climate variability can be effectively used for long-term management of water resources and environmental preservation. Therefore, identifying significant indicators for hydrologic variables and applying forecasting models still remains as a challenge. In this study, we selected representative climate indices that have significant relationships with dam inflow time series in the Han-River basin, South Korea for applying the dam inflow forecasting model. For this purpose, the ensemble empirical mode decomposition(EEMD) method was used to identify a significance between dam inflow and climate indices and an artificial neural network(ANN) ensemble model was applied to overcome the limitation of a single ANN model. As a result, the forecasting performances showed that the mean correlation coefficient of the five dams in the training period is 0.88, and the test period is 0.68. It can be expected to come out various applications using the relationship between hydrologic variables and climate variability in South Korea.
Journal of Korea Society of Digital Industry and Information Management
/
v.15
no.4
/
pp.149-157
/
2019
In case of reading passport using a smart phone in contrast with a dedicated passport reading system, MRZ(Machine Readable Zone) character recognition can be hard when the character strokes were broken, touched or blurred according to the lighting condition, and the position and size of MRZ character lines were varied due to the camera distance and angle. In this paper, the effective recognition algorithm of the passport MRZ information using a combined neural network recognizer of CNN(Convolutional Neural Network) and ANN( Artificial Neural Network), is proposed under the various sized and skewed passport images. The MRZ line detection using connected component analysis algorithm and the skew correction using perspective transform algorithm are also designed in order to achieve effective character segmentation results. Each of the MRZ field recognition results is verified by using five check digits for deciding whether retrying the recognition process of passport MRZ information or not. After we implement the proposed recognition algorithm of passport MRZ information, the excellent recognition performance of the passport MRZ information was obtained in the experimental results for PC off-line mode and smart phone on-line mode.
Proceedings of the Korea Concrete Institute Conference
/
2009.05a
/
pp.61-62
/
2009
There are many theoretical models and proposed equations for shear strength of reinforced concrete(RC) members. Because shear behavior is very complicated due to many influencing parameters, many equations have been empirically formulated and provide very different level of accuracy. ANN, therefore, have been studied by some researchers, as an alternative approach to solve this problem. In previous research, however, the number of data used in ANN analysis often were not sufficient enough to give reliable results. In this study, a database were established, containing a large number of shear test results on RC beams without transverse reinforcement, which was used for ANN analysis. The prediction results by ANN analysis were also compared with ACI 318 shear provision. The result indicates that ANN provides very good level of accuracy in the prediction of RC shear strength with a proper consideration on the effect of primary influencing parameters.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.