• Title/Summary/Keyword: ANN(Artificial Neural Networks)

Search Result 375, Processing Time 0.025 seconds

Identification of Open-Switch and Short-Switch Failure of Multilevel Inverters through DWT and ANN Approach using LabVIEW

  • Parimalasundar, E.;Vanitha, N. Suthanthira
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2277-2287
    • /
    • 2015
  • In recent times, multilevel inverters are given high priority in many large industrial drive applications. However, the reliability of multilevel inverters are mainly affected by the failure of power electronic switches. In this paper, open-switch and short-switch failure of multilevel inverters and its identification using a high performance diagnostic system is discussed. Experimental and simulation studies were carried out on five level cascaded H-Bridge multilevel inverter and its output voltage waveforms were analyzed at different switch fault cases and at different modulation index values. Salient frequency domain features of the output voltage signal were extracted using the discrete wavelet transform multi resolution signal decomposition technique. Real time application of the proposed fault diagnostic system was implemented through the LabVIEW software. Artificial neural network was trained offline using the Matlab software and the resultant network parameters were transferred to LabVIEW real time system. In the proposed system, it is possible to precisely identify the individual faulty switch (may be due to open-switch (or) short-switch failure) of multilevel inverters.

ANNs on Co-occurrence Matrices for Mobile Malware Detection

  • Xiao, Xi;Wang, Zhenlong;Li, Qi;Li, Qing;Jiang, Yong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.7
    • /
    • pp.2736-2754
    • /
    • 2015
  • Android dominates the mobile operating system market, which stimulates the rapid spread of mobile malware. It is quite challenging to detect mobile malware. System call sequence analysis is widely used to identify malware. However, the malware detection accuracy of existing approaches is not satisfactory since they do not consider correlation of system calls in the sequence. In this paper, we propose a new scheme called Artificial Neural Networks (ANNs) on Co-occurrence Matrices Droid (ANNCMDroid), using co-occurrence matrices to mine correlation of system calls. Our key observation is that correlation of system calls is significantly different between malware and benign software, which can be accurately expressed by co-occurrence matrices, and ANNs can effectively identify anomaly in the co-occurrence matrices. Thus at first we calculate co-occurrence matrices from the system call sequences and then convert them into vectors. Finally, these vectors are fed into ANN to detect malware. We demonstrate the effectiveness of ANNCMDroid by real experiments. Experimental results show that only 4 applications among 594 evaluated benign applications are falsely detected as malware, and only 18 applications among 614 evaluated malicious applications are not detected. As a result, ANNCMDroid achieved an F-Score of 0.981878, which is much higher than other methods.

Propulsion System Modeling and Reduction for Conceptual Truss-Braced Wing Aircraft Design

  • Lee, Kyunghoon;Nam, Taewoo;Kang, Shinseong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.651-661
    • /
    • 2017
  • A truss-braced wing (TBW) aircraft has recently received increasing attention due to higher aerodynamic efficiency compared to conventional cantilever wing aircraft. For conceptual TBW aircraft design, we developed a propulsion-and-airframe integrated design environment by replacing a semi-empirical turbofan engine model with a thermodynamic cycle-based one built upon the numerical propulsion system simulation (NPSS). The constructed NPSS model benefitted TBW aircraft design study, as it could handle engine installation effects influencing engine fuel efficiency. The NPSS model also contributed to broadening TBW aircraft design space, for it provided turbofan engine design variables involving a technology factor reflecting progress in propulsion technology. To effectively consolidate the NPSS propulsion model with the TBW airframe model, we devised a rapid, approximate substitute of the NPSS model by reduced-order modeling (ROM) to resolve difficulties in model integration. In addition, we formed an artificial neural network (ANN) that associates engine component attributes evaluated by object-oriented weight analysis of turbine engine (WATE++) with engine design variables to determine engine weight and size, both of which bring together the propulsion and airframe system models. Through propulsion-andairframe design space exploration, we optimized TBW aircraft design for fuel saving and revealed that a simple engine model neglecting engine installation effects may overestimate TBW aircraft performance.

An Option Hedge Strategy Using Machine Learning and Dynamic Delta Hedging (기계학습과 동적델타헤징을 이용한 옵션 헤지 전략)

  • Ru, Jae-Pil;Shin, Hyun-Joon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.712-717
    • /
    • 2011
  • Option issuers generally utilize Dynamic Delta Hedging(DDH) technique to avoid the risk resulting from continuously changing option value. DDH duplicates payoff of option position by adjusting hedge position according to the delta value from Black-Scholes(BS) model in order to maintain risk neutral state. DDH, however, is not able to guarantee optimal hedging performance because of the weaknesses caused by impractical assumptions inherent in BS model. Therefore, this study presents a methodology for dynamic option hedge using artificial neural network(ANN) to enhance hedging performance and show the superiority of the proposed method using various computational experiments.

Finite element computer simulation of twinning caused by plastic deformation of sheet metal

  • Fuyuan Dong;Wang Xu;Zhengnan Wu;Junfeng Hou
    • Steel and Composite Structures
    • /
    • v.47 no.5
    • /
    • pp.601-613
    • /
    • 2023
  • Numerous methods have been proposed in predicting formability of sheet metals based on microstructural and macro-scale properties of sheets. However, there are limited number of papers on the optimization problem to increase formability of sheet metals. In the present study, we aim to use novel optimization algorithms in neural networks to maximize the formability of sheet metals based on tensile curve and texture of aluminum sheet metals. In this regard, experimental and numerical evaluations of effects of texture and tensile properties are conducted. The texture effects evaluation is performed using Taylor homogenization method. The data obtained from these evaluations are gathered and utilized to train and validate an artificial neural network (ANN) with different optimization methods. Several optimization method including grey wolf algorithm (GWA), chimp optimization algorithm (ChOA) and whale optimization algorithm (WOA) are engaged in the optimization problems. The results demonstrated that in aluminum alloys the most preferable texture is cube texture for the most formable sheets. On the other hand, slight differences in the tensile behavior of the aluminum sheets in other similar conditions impose no significant decreases in the forming limit diagram under stretch loading conditions.

Development of Machine Learning Model of LTPO Devices (LTPO 소자의 머신 러닝 모델 개발)

  • Jungsoo Eun;Jinsoo Ahn;Minseok Lee;Wooseok Kwak;Jonghwan Lee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.179-184
    • /
    • 2023
  • We propose the modeling methodology of CMOS inverter made of LTPO TFT using a machine learning. LTPO can achieve advantages of LTPS TFT with high electron mobility as a driving TFT and IGZO TFT with low off-current as a switching TFT. However, since the unified model of both LTPS and IGZO TFTs is still lacking, it is necessary to develop a SPICE-compatible compact model to simulate the LTPO current-voltage characteristics. In this work, a generic framework for combining the existing formula of I-V characteristics with artificial neural network is presented. The weight and bias values of ANN for LTPS and IGZO TFTs is obtained and implemented into PSPICE circuit simulator to predict CMOS inverter. This methodology enables efficient modeling for predicting LTPO TFT circuit characteristics.

  • PDF

A Study on Classification of Heart Sounds Using Hidden Markov Models (Hidden Markov Model을 이용한 심음분류에 관한 연구)

  • Kim Hee-Keun;Chung Young-Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.144-150
    • /
    • 2006
  • Clinicians usually use stethoscopic auscultation for the diagnosis of heart diseases. However, the heart sound signal has varying characteristics due to the noise and/or the conditions of the patients. Also, it is not easy for junior clinicians to find the acoustical differences between different kinds or heart sound signals. which may result in errors in the diagnosis. Thus it will be quite useful for the clinicians to make use of an automatic classification system using signal processing techniques. In this paper, we propose to use hidden Markov models in stead of artificial neural networks which have been conventionally used for the automatic classification of heart sounds. In the experiments classifying heart sound signals. we could see that the proposed methods were quite successful in the classification accuracy.

Application of Artificial Neural Network Ensemble Model Considering Long-term Climate Variability: Case Study of Dam Inflow Forecasting in Han-River Basin (장기 기후 변동성을 고려한 인공신경망 앙상블 모형 적용: 한강 유역 댐 유입량 예측을 중심으로)

  • Kim, Taereem;Joo, Kyungwon;Cho, Wanhee;Heo, Jun-Haeng
    • Journal of Wetlands Research
    • /
    • v.21 no.spc
    • /
    • pp.61-68
    • /
    • 2019
  • Recently, climate indices represented by quantifying atmospheric-ocean circulation patterns have been widely used to predict hydrologic variables for considering long-term climate variability. Hydrologic forecasting models based on artificial neural networks have been developed to provide accurate and stable forecasting performance. Forecasts of hydrologic variables considering climate variability can be effectively used for long-term management of water resources and environmental preservation. Therefore, identifying significant indicators for hydrologic variables and applying forecasting models still remains as a challenge. In this study, we selected representative climate indices that have significant relationships with dam inflow time series in the Han-River basin, South Korea for applying the dam inflow forecasting model. For this purpose, the ensemble empirical mode decomposition(EEMD) method was used to identify a significance between dam inflow and climate indices and an artificial neural network(ANN) ensemble model was applied to overcome the limitation of a single ANN model. As a result, the forecasting performances showed that the mean correlation coefficient of the five dams in the training period is 0.88, and the test period is 0.68. It can be expected to come out various applications using the relationship between hydrologic variables and climate variability in South Korea.

Recognition of Passport MRZ Information Using Combined Neural Networks (결합 신경망을 이용한 여권 MRZ 정보 인식)

  • Kim, Jinho
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.15 no.4
    • /
    • pp.149-157
    • /
    • 2019
  • In case of reading passport using a smart phone in contrast with a dedicated passport reading system, MRZ(Machine Readable Zone) character recognition can be hard when the character strokes were broken, touched or blurred according to the lighting condition, and the position and size of MRZ character lines were varied due to the camera distance and angle. In this paper, the effective recognition algorithm of the passport MRZ information using a combined neural network recognizer of CNN(Convolutional Neural Network) and ANN( Artificial Neural Network), is proposed under the various sized and skewed passport images. The MRZ line detection using connected component analysis algorithm and the skew correction using perspective transform algorithm are also designed in order to achieve effective character segmentation results. Each of the MRZ field recognition results is verified by using five check digits for deciding whether retrying the recognition process of passport MRZ information or not. After we implement the proposed recognition algorithm of passport MRZ information, the excellent recognition performance of the passport MRZ information was obtained in the experimental results for PC off-line mode and smart phone on-line mode.

Prediction of Shear Strength Using Artificial Neural Networks(ANN) for Reinforced Concrete Beams without Shear Reinforcement (인공신경망을 이용한 전단보강 되지 않은 철근콘크리트 보의 전단강도 예측)

  • Kang, Ju-Oh;Cho, Hae-Chang;Lee, Deuck-Hang;Bang, Young-Sik;Kal, Kyoung-Wan;Kim, Kang-Su
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.61-62
    • /
    • 2009
  • There are many theoretical models and proposed equations for shear strength of reinforced concrete(RC) members. Because shear behavior is very complicated due to many influencing parameters, many equations have been empirically formulated and provide very different level of accuracy. ANN, therefore, have been studied by some researchers, as an alternative approach to solve this problem. In previous research, however, the number of data used in ANN analysis often were not sufficient enough to give reliable results. In this study, a database were established, containing a large number of shear test results on RC beams without transverse reinforcement, which was used for ANN analysis. The prediction results by ANN analysis were also compared with ACI 318 shear provision. The result indicates that ANN provides very good level of accuracy in the prediction of RC shear strength with a proper consideration on the effect of primary influencing parameters.

  • PDF