• 제목/요약/키워드: ANGULAR-VELOCITY

검색결과 914건 처리시간 0.023초

3-D Shock Structure of Orion KL Outflow with IGRINS

  • Oh, Heeyoung;Pyo, Tae-Soo;Kaplan, Kyle F.;Koo, Bon-Chul;Yuk, In-Soo;Lee, Jae-Joon;Mace, Gregory N.;Sokal, Kimberly R.;Hwang, Narae;Park, Chan;Park, Byeong-Gon;Jaffe, Daniel T.
    • 천문학회보
    • /
    • 제43권2호
    • /
    • pp.38.3-38.3
    • /
    • 2018
  • We present the results of high-resolution near-IR spectral mapping toward the Orion KL outflow. In this study, we used the Immersion Grating Infrared Spectrometer (IGRINS) on the 2.7 m Harlan J. Smith Telescope at McDonald Observatory. IGRINS's large wavelength coverage over the H & K bands and high spectral resolving power (R ~ 45,000) allowed us to detect over 35 shock-excited ro-vibrational H2 transitions and to measure directly the gas temperature and velocity of the dense outflows. In our previous study toward the H2 peak 1 region in the Orion KL outflow, we identified 31 outflow fingers from a datacube of the H2 1-0 S(1) $2.122{\mu}m$ line and constructed a three-dimensional map of the fingers. The internal extinction (${\Delta}AV$ > 10 mag) and overall angular spread of the flow argue for an ambient medium with a high density (105 cm-3). In this presentation, we show preliminary results of additional mapping toward a remarkable chain of bows (HH 205 - HH 207) farther from the ejection center, and obtain a more clear view of the shock physics of a single isolated bullet that improves on the knowledge gained from observations of the more complex peak 1 region in our earlier study.

  • PDF

Implementation of Rule-based Smartphone Motion Detection Systems

  • Lee, Eon-Ju;Ryou, Seung-Hui;Lee, So-Yun;Jeon, Sung-Yoon;Park, Eun-Hwa;Hwang, Jung-Ha;Choi, Doo-Hyun
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권7호
    • /
    • pp.45-55
    • /
    • 2021
  • 스마트폰에 내장된 각종 센서를 통해 획득할 수 있는 정보는 사용자의 움직임, 상황 등을 파악하고 분석하는데 유용하게 활용될 수 있다. 본 논문에서는 스마트폰의 가속도 센서와 자이로스코프 센서에서 얻은 정보를 분석하여 'I', 'S', 'Z' 모션을 인식하는 두 가지 규칙기반 시스템을 제안한다. 먼저, 각 모션에 대한 가속도 및 각속도의 특성을 분석한다. 이를 기반으로 두 가지 종류의 규칙기반 모션 인식 시스템을 제안하고 이를 안드로이드 앱으로 구현하여 각 모션에 대한 성능을 비교한다. 두 가지 규칙기반시스템은 각 모션에 대해서 90% 이상의 인식률을 보이며 앙상블을 이용한 규칙기반 시스템은 다른 시스템보다 향상된 성능을 보인다.

마이크로 수력 발전을 위한 프로펠러형 림구동 축류 터빈 설계 (Design of a Propeller Type Rim-Driven Axial-Flow Turbine for a Micro-Hydropower System)

  • 오진안;방덕제;정노택;이수민;이진태
    • 대한조선학회논문집
    • /
    • 제59권3호
    • /
    • pp.183-191
    • /
    • 2022
  • A design method for a propeller type rim-driven axial-flow turbine for a micro-hydropower system is presented. The turbine consists of pre-stator, impeller and post-stator, where the pre-stator plays a role as a guide vane to provide circumferential velocity to the on-coming flow, and the impeller as a rotational power generator by absorbing angular momentum of the flow. BEM(Blade Element Method), which is based on the turbine Euler equation, is employed to design the pre-stator and impeller blades. NACA 66 thickness form and a=0.8 mean camber line, which is widely accepted as a marine propeller blade section, is used for the pre-stator and turbine blade section. A CFD method, derived from the discretization of the RANS equations, is applied for the analysis of the designed turbine system. The design conditions of the turbine is confirmed by the CFD calculation. Turbine characteristic curve is calculated by the CFD method, in order to provide the performance characteristics at off-design operation conditions. The proposed procedures for the design of a propeller type rim-driven axial-flow turbine are established and confirmed by the CFD analysis.

차륜형 캐터필러 및 좌석 위치 가변 구조를 갖는 휠체어 계단 이동 보조기기의 직진 주행 보정에 관한 연구 (A Study on the Correction of Straight Driving of Wheelchair Assistive Device to Move the Stairs with Wheel Type Caterpillar and Seat Position Variable Structure)

  • 엄수홍;정지안;이원영;신진우;이응혁
    • 전기전자학회논문지
    • /
    • 제26권4호
    • /
    • pp.602-613
    • /
    • 2022
  • 본 논문은 차륜형 캐터필러 및 좌석 위치 가변 구조를 갖는 휠체어 계단 이동 보조기기의 구조에서 비롯되는 계단 이동 중 직진 주행 이탈 상황을 모델링 하고 추정 및 보정하는 알고리즘을 제안하였다. 주행 이탈 상황은 플랫폼의 Yawing 상황 모델 분석으로 주행 환경 특성상 Roll, Pitch와 Yaw 사이에 관계를 이용하여 Yaw값 변화 추이를 추정 하였으며, 차륜 구동 제어기의 제어변수 및 좌석 위치 제어 변수로 활용하였다. 정량적 검증 결과 약 10°의 Yawing 상황에서 약 7초 내외로 직진성 보정을 확인 하였으며, 좌석 위치 변화로 경로 보정간 회전 각속도를 47.5% 감소 시켜 직진성 보정에 효과가 있음을 확인 하였다.

데이터 수집 장치를 이용한 유도탄 구동장치 점검 제안 (Proposal for guided missile actuator device inspection using data acquisition device)

  • 정의재;오택근;이정민;유필중
    • 한국항행학회논문지
    • /
    • 제27권4호
    • /
    • pp.423-428
    • /
    • 2023
  • 유도탄 구동장치는 구동장치 날개 펼침 시간과 위치가 유도탄의 초기 기동에 매우 중요한 요소가 되며, 유도탄 구동장치 점검은 구동 동작 수집 데이터 획득 정확성과 실시간성이 보장되어야 한다. 본 연구에서는 기존 구동장치 점검 설계 및 구현방식과 데이터 수집장치 구동장치의 설계 구현방식 차이를 비교하고, 데이터 수집량, 실시간 데이터 수집 성능 차이를 획득 후 비교하였으며, 시험을 통해 나타난 데이터를 그래프로 변환한다. 획득된 데이터 구동장치 파형을 비교 분석하고, 분석된 데이터를 기반으로 기존 구동장치 점검과 데이터 수집장치 점검 중 실시간 응답 속도와 안정성이 보장된 데이터 수집장치 점검구성을 제안한다.

선박자동조타를 위한 RCGA기반 T-S 퍼지 PID 제어 (T-S fuzzy PID control based on RCGAs for the automatic steering system of a ship)

  • 이유수;황순규;안종갑
    • 수산해양기술연구
    • /
    • 제59권1호
    • /
    • pp.44-54
    • /
    • 2023
  • In this study, the second-order Nomoto's nonlinear expansion model was implemented as a Tagaki-Sugeno fuzzy model based on the heading angular velocity to design the automatic steering system of a ship considering nonlinear elements. A Tagaki-Sugeno fuzzy PID controller was designed using the applied fuzzy membership functions from the Tagaki-Sugeno fuzzy model. The linear models and fuzzy membership functions of each operating point of a given nonlinear expansion model were simultaneously tuned using a genetic algorithm. It was confirmed that the implemented Tagaki-Sugeno fuzzy model could accurately describe the given nonlinear expansion model through the Zig-Zag experiment. The optimal parameters of the sub-PID controller for each operating point of the Tagaki-Sugeno fuzzy model were searched using a genetic algorithm. The evaluation function for searching the optimal parameters considered the route extension due to course deviation and the resistance component of the ship by steering. By adding a penalty function to the evaluation function, the performance of the automatic steering system of the ship could be evaluated to track the set course without overshooting when changing the course. It was confirmed that the sub-PID controller for each operating point followed the set course to minimize the evaluation function without overshoot when changing the course. The outputs of the tuned sub-PID controllers were combined in a weighted average method using the membership functions of the Tagaki-Sugeno fuzzy model. The proposed Tagaki-Sugeno fuzzy PID controller was applied to the second-order Nomoto's nonlinear expansion model. As a result of examining the transient response characteristics for the set course change, it was confirmed that the set course tracking was satisfactorily performed.

Feasibility study on an acceleration signal-based translational and rotational mode shape estimation approach utilizing the linear transformation matrix

  • Seung-Hun Sung;Gil-Yong Lee;In-Ho Kim
    • Smart Structures and Systems
    • /
    • 제32권1호
    • /
    • pp.1-7
    • /
    • 2023
  • In modal analysis, the mode shape reflects the vibration characteristics of the structure, and thus it is widely performed for finite element model updating and structural health monitoring. Generally, the acceleration-based mode shape is suitable to express the characteristics of structures for the translational vibration; however, it is difficult to represent the rotational mode at boundary conditions. A tilt sensor and gyroscope capable of measuring rotational mode are used to analyze the overall behavior of the structure, but extracting its mode shape is the major challenge under the small vibration always. Herein, we conducted a feasibility study on a multi-mode shape estimating approach utilizing a single physical quantity signal. The basic concept of the proposed method is to receive multi-metric dynamic responses from two sensors and obtain mode shapes through bridge loading test with relatively large deformation. In addition, the linear transformation matrix for estimating two mode shapes is derived, and the mode shape based on the gyro sensor data is obtained by acceleration response using ambient vibration. Because the structure's behavior with respect to translational and rotational mode can be confirmed, the proposed method can obtain the total response of the structure considering boundary conditions. To verify the feasibility of the proposed method, we pre-measured dynamic data acquired from five accelerometers and five gyro sensors in a lab-scale test considering bridge structures, and obtained a linear transformation matrix for estimating the multi-mode shapes. In addition, the mode shapes for two physical quantities could be extracted by using only the acceleration data. Finally, the mode shapes estimated by the proposed method were compared with the mode shapes obtained from the two sensors. This study confirmed the applicability of the multi-mode shape estimation approach for accurate damage assessment using multi-dimensional mode shapes of bridge structures, and can be used to evaluate the behavior of structures under ambient vibration.

일회성 등속성 운동이 심장 자율신경 조절 및 근속성에 미치는 영향 (Effect of Transient Isokinetic Exercise on Cardiac Autonomic Nervous Modulation and Muscle Properties)

  • 박수경;박시은
    • 대한통합의학회지
    • /
    • 제11권4호
    • /
    • pp.27-39
    • /
    • 2023
  • Purpose : The aim of this study was to identify the influence of transient isokinetic exercise on cardiac autonomic modulation and muscle properties in healthy male subjects. Methods : Twenty-eight healthy males underwent isokinetic exercise of both knee joints using a Biodex systems 3 isokinetic dynamometer with an angular velocity of 60 °/sec. The changes in activity of the autonomic nervous system, as determined by heart rate variability (HRV), and in muscle properties were evaluated at three times: pre-exercise, immediately post-exercise, and 10 min post-exercise. Results : The time domain analysis of HRV revealed significant changes in the beat count and mean and minimal heart rate (HR) measured at pre-exercise, immediately post-exercise, and 10 min post-exercise (p<.001). The beat count and mean HR were markedly increased immediately post-exercise compared to pre-exercise, but then significantly decreased at 10 min post-exercise (p<.001). All parameters of the frequency domain were significantly altered by isokinetic exercise (p<.01). The low frequency/high frequency (LF/HF) ratio, as an index for the sympathovagal balance, was elevated by exercise and remained at a similarly high level at 10 min post-exercise (p<.01). The muscle properties of rectus femoris were changed as follows: Muscle tone and stiffness were significantly increased between pre-exercise and immediately post-exercise (p<.001), and between pre-exercise and at 10 min post-exercise (p<.001). Whereas, the elasticity showed no significant change. Conclusion : These results demonstrated that transient isokinetic exercise could induce changes in cardiac autonomic control and muscle properties. In particular, up-regulation of LF/HF ratio after exercise signifies thus enhanced sympathetic modulation by isokinetic exercise. Therefore, it is needed to understand the cardiovascular risks that may arise during isokinetic exercise for providing the basic evidence to establish appropriate isokinetic exercise protocols as effective rehabilitation exercises.

Pilot Study - 고관절 각도 및 각속도 기반 기립(Sit-To-Stand) 및 착석(Stand-To-Sit) 근력 지원 웨어러블 로봇 알고리즘 개발 (Pilot Study - Development of Sit-To-Stand and Stand-To-Sit Muscle-Assisted Wearable Robot Algorithms in Elderly Patients with Hip Angle and Angular Velocity)

  • 이용현;최진탁;신동빈;지영훈;장혜연;한창수;이연준
    • 로봇학회논문지
    • /
    • 제18권4호
    • /
    • pp.385-391
    • /
    • 2023
  • In the elderly population, sarcopenia occurs due to physical aging, leading to movement restrictions and loss of function. This results in dependence on daily activities and limitations in participation, ultimately decreasing the overall quality of life. In this study, we propose an algorithm designed to enable patients with sarcopenia to perform sit-to-stand and stand-to-sit movements seamlessly in their daily lives. The algorithm incorporates a wearable robot for muscle support and includes algorithms for standing and seated muscle strength support. To validate the algorithm's performance, EMG sensors were attached to the Rectus Femoris and Biceps Femoris muscles. The participants underwent two scenarios: one without wearing the device and one with the device providing muscle strength support, performing sit-to-stand and stand-to-sit motions for one minute in each case. The results showed a 16% increase in the EMG peak value of the Rectus Femoris muscle during standing motion (p=0.009). On the right side, there was a roughly 20% decrease (p=0.018) during standing and a 21% decrease (p=0.014) during sitting motion. In the future, we aim to gather additional data to further refine the algorithm. Our goal is to develop an optimal muscle strength support algorithm based on this data, making it applicable for real-life use by patients with sarcopenia.

스쿼시 백핸드 드라이브 동작시 상지 분절의 운동학적 변인 분석 (The Kinematic Analysis of the Upper Extremity during Backhand Stroke in Squash)

  • 안용환;류지선;류호영;소재무;임영태
    • 한국운동역학회지
    • /
    • 제17권2호
    • /
    • pp.145-156
    • /
    • 2007
  • The purposes of this study were to investigate kinematic parameters of racket head and upper extremities during squash back hand stroke and to provide quantitative data to the players. Five Korean elite male players were used as subjects in this study. To find out the swing motion of the players, the land-markers were attached to the segments of upper limb and 3-D motion analysis was performed. Orientation angles were also computed for angular movement of each segment. The results were as follows. 1) the average time of the back hand swing (downswing + follow-through) was 0.39s (0.24 s + 0.15 s). 2) for each event, the average racket velocity at impact was 11.17m/s and the velocity at the end of swing was 8.03m/s, which was the fastest swing speed after impact. Also, for each phase, 5.10m/s was found in down swing but 7.68m/s was found in follow-through. Racket swing speed was fastest after the impact but the swing speed was reduced in the follow-through phase. 3) in records of average of joints angle, shoulder angle was defined as the relative angle to the body. 1.04rad was found at end of back swing, 1.75rad at impact and it changes to 2.35 rad at the end of swing. Elbow angle was defined as the relative angle of forearm to upper arm. 1.73rad was found at top of backswing, 2.79rad at impact, and the angle was changed to 2.55rad at end of swing. Wrist angle was defined as the relative angle of hand to forearm. 2.48rad was found at top of backswing, 2.86rad at impact, and the angle changes to 1.96rad at end of swing. As a result, if the ball is to fly in the fastest speed, the body has to move in the order of trunk, shoulder, elbow and wrist (from proximal segment to distal segment). Thus, the flexibility of the wrist can be very important factor to increase ball speed as the last action of strong impact. In conclusion, the movement in order of the shoulder, elbow and the wrist decided the racket head speed and the standard deviations were increased as the motion was transferred from proximal to the distal segment due to the personal difference of swing arc. In particular, the use of wrist (snap) may change the output dramatically. Therefore, it was concluded that the flexible wrist movement in squash was very important factor to determine the direction and spin of the ball.