DOI QR코드

DOI QR Code

A Study on the Correction of Straight Driving of Wheelchair Assistive Device to Move the Stairs with Wheel Type Caterpillar and Seat Position Variable Structure

차륜형 캐터필러 및 좌석 위치 가변 구조를 갖는 휠체어 계단 이동 보조기기의 직진 주행 보정에 관한 연구

  • Su-Hong, Eom (Dept. of Electronics Engineering, Tech University of Korea) ;
  • Ji-An, Jung (Dept. of Fusion Energy Team(EnE2), DAWONSYS) ;
  • Won-Young, Lee (Dept. of Electronics Engineering, Tech University of Korea) ;
  • Jin-Woo, Sin (Dept. of Electronics Engineering, Tech University of Korea) ;
  • Eung-Hyuk, Lee (Dept. of Electronics Engineering, Tech University of Korea)
  • Received : 2022.12.09
  • Accepted : 2022.12.19
  • Published : 2022.12.31

Abstract

This paper proposes an algorithm for correcting indirect situations resulting from the wheelchair moving the stairs with wheel-type caterpillar and seat position variable. For analyzing the Yawing movement model, the change of Yaw value was estimated using Roll, Pitch, and Yaw in the driving environment, and it was used as a control variable and the information of the wheel drive controller. The verification confirmed the correction of about 10° of Yawing movement within about 7 seconds. It was confirmed that the angular velocity was reduced by 47.5% in seat position change.

본 논문은 차륜형 캐터필러 및 좌석 위치 가변 구조를 갖는 휠체어 계단 이동 보조기기의 구조에서 비롯되는 계단 이동 중 직진 주행 이탈 상황을 모델링 하고 추정 및 보정하는 알고리즘을 제안하였다. 주행 이탈 상황은 플랫폼의 Yawing 상황 모델 분석으로 주행 환경 특성상 Roll, Pitch와 Yaw 사이에 관계를 이용하여 Yaw값 변화 추이를 추정 하였으며, 차륜 구동 제어기의 제어변수 및 좌석 위치 제어 변수로 활용하였다. 정량적 검증 결과 약 10°의 Yawing 상황에서 약 7초 내외로 직진성 보정을 확인 하였으며, 좌석 위치 변화로 경로 보정간 회전 각속도를 47.5% 감소 시켜 직진성 보정에 효과가 있음을 확인 하였다.

Keywords

Acknowledgement

This research was supproted by a grant of Korea Health Technology R&D Project through the Korea Health Industry Development Institute(KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (HJ20C0058) This research was supported by the MSIT(Ministry of Science and ICT), Korea, under the ITRC(Information Technology Research Center) support program(IITP-2022-2018-0-01426) supervised by the IITP(Institute for Information & Communications Technology Planning & Evaluation)

References

  1. "Global Wheelchair Market, By Product Type, By Category, By Application, By End User, By Region, Company Forecast & Opportunities," TechSci Research, 2022.
  2. J. Leaman, H. M. La, "A Comprehensive Review of Smart Wheelchairs: Past, Present, and Future," IEEE Transactions on Human-Machine Systems, vol.47, no.4, pp.468-499, 2017. DOI: 10.1109/THMS.2017.2706727
  3. Y. T. Jung, Y. J. Kim, W. H. Lee, M. S. Bang, Y. D. Kim, S. W. Kim, "Path Planning Algorithm for an Autonomous Electric Wheelchair in Hospitals," IEEE Access, vol.8, pp.208199-208213, 2020. DOI: 10.1109/ACCESS.2020.3038452
  4. Alex Mihailidis, Pantelis Elinas, Jennifer Boger, Jesse Hoey, "An Intelligent Powered Wheelchair to Enable Mobility of Cognitively Impaired Older Adults: An Anticollision System," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.15, no.1, pp.136-143, 2007. DOI: 10.1109/TNSRE.2007.891385
  5. "A Survey on Safety Accidents in Wheelchairs," Safety report, Korean Consumer Agency 11-11, pp.1-33, 2011.
  6. Benjamas Panomruttanarug, Phichitphon Chotikunnan, "Self-balancing iBOT-like wheelchair based on type-1 and interval type-2 fuzzy control," 2014 11th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), 2014. DOI: 10.1109/ECTICon.2014.6839710
  7. J. Chocoteco, R. Morales, V. Feliu, L. Sanchez, "Trajectory Planning for a Stair-Climbing Mobility System Using Laser Distance Sensors," IEEE Systems Journal, vol.10, no.3, pp.944-956, 2016. DOI: 10.1109/JSYST.2014.2309477
  8. Mobius Mobility, "https://mobiusmobility.com".
  9. Scewo, "www.scewo.com".
  10. Sano, "https://www.sano-stairclimbers.com/liftkar-ptr".
  11. D. J, Seo, S. W, Lim, "Development of a wireless controller for stair climbing powered wheelchair," 2010 ICROS Conference on Institute of Control, Robotics and Systems, pp.16-18, 2010. DOI: 10.1177/1729881417721436
  12. W. Cho, H. S. Cho, J. K. Kim, S. K. Kim, M. S. Moon, "Design of tracked mechanism for stair climbing wheelchair," 2011 Korean Society for Precision Engineering Spring Conference, pp. 1303-1304, 2011.
  13. J. K. Lee, "Comparison of Acceleration Compensating Mechanisms for Improvement of IMU-Based Orientation Determination," The Korean Society of Mechanical Engineers, vol.40, no.9, pp.783-790, 2016. DOI: 10.3795/KSME-A.2016.40.9.783
  14. C. S. Han, H. Y. Kim, "A Real-time Yaw Rotation Angle Measurement System for Human Heads Using a Gyro Sensor," Journal of KIIT, vol.15, no.8, pp.59-66, 2017. DOI: 10.14801/jkiit.2017.15.8.59
  15. H. C. Hwang, S. H. Eom, D. K. Lee, E. H. LEE, "A Study on Maintaining Seating Stability for Users of Wheelchair Climbing Assistance Devices," 2019 Summer Annual Conference of IEIE, pp. 827-829, 2019.
  16. W. Y. Lee, D. K. Lee, E. H. Lee, "A Study on The Straightness Improvement Method for Ensure Safety of Mobile Walker in Slope," Journal of Rehabilitation Welfare Engineering & Assistive Technology, vol.8, no.3, pp.187-196, 2014.