• Title/Summary/Keyword: ANGULAR-VELOCITY

Search Result 916, Processing Time 0.029 seconds

Kinematic Analysis of Acopian in Vault (도마종목 Kasamatsu계의 Akopian 기술동작 분석)

  • Lee, Soon-Ho;Park, Jong-Hoon;Lee, Chong-Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.1
    • /
    • pp.89-99
    • /
    • 2006
  • The study were to assess technical factors between the high score group and the low score group, from the subjects of 16 male national gymnasts, and to analyze the kinematical characteristic and main technical cause on technique of Akopian's 3D motion analysis of the male vaulting game in 2001 classification championship. The result of this study is this. There were not so much difference between the two groups in term; of the time of board contact, pre-flight, and total performance, but it takes shorter time when the players who are in the high point group take down the board, and they take long time for post-flight(p<.01). The high point group has a longer perpendicular distance in the moment of horse taking off, 0.05m on the average, than the low point group. The high point group shows 0.16m higher on the average than the other group in term; of the height of post-flight(p<.01). In the phase of board contact, the range of horizontal velocity at board take on were $7.66m/s{\sim}7.33m/s$, but there weren't significantly statistic differences between two groups. The hight score group were 0.68m/s faster than the low point group at the horizontal velocity at board take off event(<.05). About the average horizontal velocity of deceleration, AG1(-1.95m/s) reduces the speed more than AG2(-1.57m/s)(p<.05). And the hight score group were 0.37m/s faster than the low point group at the vertical velocity at horse take off event(<.05). When board taking off, the projectile angle of com were $38.7{\sim}37.8degree$ on the average. the comparative groups show almost same results. When horse taking off, the HPVy of the high point group were 37.6 degree which were a little higher than the low point group. The angular velocities of the players who takes on the horse with a right hand and then takes off with a left hand in the high point group were 14.97rad/sec, 10.82rad/sec in the low point group. However, the angular velocity of the players who takes on the horse with a left hand and then takes off on a right hand with the high point group were 14.97rad/sec, 15.56rad/sec in the low point group.

An Experimental Study on Flow Characteristics of Turbulent Pulsating Flow in a Curved Duct by using LDV (LDV에 의한 곡관덕트에서 난류맥동유동의 유동특성에 관한 실험적 연구)

  • Lee, Hong-Gu;Son, Hyun-Chul;Lee, Haeng-Nam;Park, Gil-Moon
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.397-403
    • /
    • 2000
  • In the present study, flow characteristics of turbulent pulsating flow in a square-sectional $180^{\circ}$ curved duct were experimentally investigated. Experimental studies for air flows were conducted to measure axial velocity and wall shear stress distributions and entrance length in a square-sectional $180^{\circ}$ curved duct by using the LDV with the data acquisition and the processing system. The experiment was conducted in seven sections from the inlet (${\phi}=0^{\circ}$) to the outlet (${\phi}=180^{\circ}$) at $30^{\circ}$ intervals of the duct. The results obtained from the experimentation were summarized as follows ; (1) When the ratio of velocity amplitude ($A_1$) was less than one, there was hardly any velocity change in the section except near the wall and any change in axial velocity distributions along the phase. When the ratio of velocity amplitude ($A_1$) was 0.6, the change rate of velocity was slow. (2) Wall shear stress distributions of turbulent pulsating flow were similar to those of turbulent steady flow. The value of the wall shear stress became minimum in the inner wall aid gradually increased toward the outer wall where it became maximum. (3) The entrance length of turbulent pulsating flow reached near the region of bend angle of $90^{\circ}$, like that of turbulent steady flow. The entrance length was changed by the dimensionless angular frequency (${\omega}^+$).

  • PDF

Determination of Phase Velocity Dispersion Curve and Group Velocity of lamb Waves Using Backward Radiation (후방복사를 이용한 램파의 위상속도 분산과 군속도의 측정)

  • 송성진;권성덕;정용무;김영환
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.61-68
    • /
    • 2003
  • The guided wave has been widely employed to characterize thin plates and layered media. The dispersion curves of phase and group velocities are essential for the quantitative application of guided waves. In the present work, a fully automated system for the measurement of backward radiation of LLW has been developed. The specimen moves in two dimensional plane as well as in angular rotation. The signals of backward radiation of LLW were measured from an elastic plate in which specific modes of Lamb wave were strongly generated. Phase velocity of the corresponding modes was determined from the incident angle. The generated Lamb waves propagated forward and backward with the leakage of energy into water. Backward radiated LLW was detected by the same transducer and its frequency components were analyzed to extract the related information to the dispersion curves. The dispersion curves of phase velocity were measured by varying the incident angle. Moving the specimen in the linear direction of LLW propagation, group velocity was determined by measuring the transit time shift in the ultrasonic waveform.

Linear Shallow Water Equations for Waves with Damping (파랑 에너지 감쇠가 있는 경우의 선형천수방정식)

  • Jung, Tae-Hwa;Lee, Chang-Hoon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.1
    • /
    • pp.10-15
    • /
    • 2012
  • Wave characteristics in the presence of energy damping are investigated using the linear shallow water equations. To get the phase and energy velocities, geometric optics approach is used and then these values are validated through numerical experiments. Energy damping affects wave height, phase and energy velocities which result in wave transformation. When the complex wavenumber is used by the Eulerian approach, it is found that the phase velocity decreases as the damping increases while the energy velocity increases showing higher values than the phase velocity. When the complex angular frequency is used by the Lagrangian approach, the energy-damping wave group is found to propagate in the energy velocity. The energy velocity is found to affect shoaling and refraction coefficient which is verified through numerical experiments for waves on a plane slope.

A Comparative Study of Flight Distance in Golf Swing, After the Driver Shot (골프 드라이버 스윙시 볼의 종류에 따른 비거리분석)

  • Ryu, Ho-Yeong
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.1
    • /
    • pp.63-72
    • /
    • 2003
  • This study is examine and analysis of the most flying and run distance during swing three times with six balls between two amateurs and pro-golfers in golf field in Sungnam airport. During down swing, kinetics variances are velocity of club-head and balls, vertical angular velocity. this scientic data present amateur golfers with recognition of long flying distances for golf balls. Through this study, the conclusions are as follows. 1. Before impact the balls, The club-head velocity of amateur golfers and pro-golfers show 33.34 - 39.53m/s, 39.04 - 42.82m/s respectively during the down swing. But The club-head velocity, flight and Run distances comparative $K_1$ amateur golfer with the pro-golfer are similar. 2. After impact the balls, The balls velocity if amateur golfers show 53.04 - 61.57m/s, The pro-golfers show 62.32 - 63.4m/s respectively during the down swing. In case of $K_3$,$K_4$, After the impact balls velocity comparative The RA brand with other brand are similar, Flight and Run distance are difference. 3. After impact the balls, The balls velocity are difference to other brand but The long flight and Run distance arrange RA, BIG, TITL. 4. In the vertical flight angle of the ball after impact, amateur golfer showed 16.75 - $18.73^{\circ}$. The pro-golfer showed 15.03 - $16.04^{\circ}$. In the vertical flight angle of the balls ideal $12-13^{\circ}$, The long flight and Run distance approach In the vertical flight angle the balls $12-13^{\circ}$.

Spiral motion of the oblate rising bubble (자유 상승하는 편구형 기포의 나선운동)

  • Lee, Jae-Young;Lee, Cheol-Ha
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3015-3020
    • /
    • 2007
  • An experimental study of the dynamic characteristics of the free rising oblate spherical bubble is investigated. As noted by Saffman, the characteristics of the spiral motion are defined with parameters of the spiral frequency, spiral radius, and rising velocity. High speed camera recorded every detail information of free rising bubble. The spiral number, the bubble rise velocity, and the angular velocities were measured for the bubble size between 1.0mm to 20.0mm in diameter. In order to make clear trajectory, we employed the Fast Fourier Transformation for the normal digital camera data to synchronize with the high speed camera data. It was found that the spiral number suggested here was monotonically decreased as the bubble size increases. The present observation, however tells us that previous Saffman's formulation shows a good agreement with the trend, but over estimated spiral number. Therefore, it is recommended that Saffman's theoretical study is needed to be improved.

  • PDF

Development of the hybrid algorithm for the car navigation system (자동차 항법용 혼합항법 알고리즘 개발)

  • 김상겸;양승규;김정하
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1403-1406
    • /
    • 1997
  • Generally, G.P.S(Global Positioning System) is using for the car navigation system but it has some restrictions such as the discontinuity of earth satellites and SA (Selective Availability). Recently, the hybrid navigation system combining with G.P.S and Dead-reckoning are much attractuve for improving the accuracy of a vehicle positioning. G.P.S called satellite navigation system, can measure its position by using satellites. Dead-Reckoning is the self-contained navigatioin system using a wheel sensor for the vehicle velocity and a gyro sensor for the vehicle angular velocity. Some algorithm could be generated for finding the vehicle position and orientation. In this paper, we developed a hybrid algotithm wiht G.P.S DR and Map-Matching.

  • PDF

Anti-Sway Control of Container Cranes;Inclinometer, Observers, and State Feedback

  • Kim, Yong-Seok;Hong, Keum-Shik;Sul, Seung-Ki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1365-1370
    • /
    • 2004
  • In this paper, a novel anti-sway control system that uses an inclinometer as a sway sensor is investigated. The inclinometer, when compared with a vision system, is very cheap, durable, and its maintenance is easy. However, it gives almost the same performance. Various observers for estimating the angular velocity of the load and the trolley velocity are presented. A state feedback controller with an integrator is designed. After a time-scale analysis, a 1/4-size pilot crane of the rail-mounted quayside crane is constructed. The performance of the proposed control system was verified with a real rubber-tired gantry crane at a container terminal as well as with the pilot crane constructed. Experimental results are provided.

  • PDF

Numerical investigation on the blood flow characteristics considering the axial rotation in stenosed artery

  • Sung, Kun-Hyuk;Ro, Kyoung-Chul;Ryou, Hong-Sun
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.2
    • /
    • pp.119-126
    • /
    • 2009
  • A numerical analysis is performed to investigate the effect of rotation on the blood flow characteristics with four different angular velocities. The artery has a cylindrical shape with 50% stenosis rate symmetrically distributed at the middle. Blood flow is considered a non-Newtonian fluid. Using the Carreau model, we apply the pulsatile velocity profile at the inlet boundary. The period of the heart beat is one second. In comparison with no-rotation case, the flow recirculation zone (FRZ) contracts and its duration is reduced in axially rotating artery. Also wall shear stress is larger after the FRZ disappears. Although the geometry of artery is axisymmetry, the spiral wave and asymmetric flow occur clearly at the small rotation rate. It is caused that the flow is influenced by the effects of the rotation and the stenosis at same time.

Improvement of Vehicle Directional Stability in Cornering Based on Yaw Moment Control

  • Youn, Weon-Young;Song, Jae-Bok
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.8
    • /
    • pp.836-844
    • /
    • 2000
  • In this research any abnormal motion of a vehicle is detected by utilizing the difference between the reference and actual yaw velocities as sell as the information on vehicle slip angle and slip angular velocity. This information is then used as a criterion for execution of the yaw moment control. A yaw moment control algorithm based on the brake control is proposed for improving the directional stability of the vehicle. The controller executes brake controls to provide each wheel with adequate brake pressures, which generate the needed yaw moment. It is shown that the proposed yaw moment control logic can provide excellent cornering capabilities even on low friction roads. This active control scheme can prevent a vehicle from behaving abnormally, and can assist normal drivers in coping with dangerous situations as well as experienced drivers.

  • PDF