• 제목/요약/키워드: ANGULAR MOMENTUM

검색결과 238건 처리시간 0.023초

Calculation of the NMR Chemical Shift for a 3d$^2$ System in a Strong Crystal Field of Octahedral Symmetry

  • Ahn, Sang-Woon;Kim, Dong-Hee;Park, Eui-Suh
    • Bulletin of the Korean Chemical Society
    • /
    • 제6권2호
    • /
    • pp.63-67
    • /
    • 1985
  • The NMR chemical shift arising from 3d electron spin dipolar nuclear spin angular momentum interactions for a 3d$^2$ system in a strong crystal field environment of octahedral symmetry has been investigated when the fourfold axis is chosen to be our axis of quantization. The NMR shift is separated into the contribution of 1/R$^5$ and 1/R$^7$ terms. A comparision of the multipolar terms with nonmultipolar results shows that the 1/R$^5$ term contributes dominantly to the NMR shift and there is in good agreement between the exact solution and the multipolar results when R ${\ge}$ 0.25. A temperature dependence analysis may lead to the results that the 1/T$^2$ term has the dominant contribution to the NMR shift for a paramagnetic 3d$^2$ system but the contribution of the 1/T term may not be negligible.

Ligand Field Approach to $4d^{1}$ Magnetism Based on Intermediate Field Coupling Scheme

  • 최진호;김종영
    • Bulletin of the Korean Chemical Society
    • /
    • 제18권9호
    • /
    • pp.976-981
    • /
    • 1997
  • The magnetic susceptibilities of molybdenum ions with 4d1 electronic configuration in the octahedral crystal field were calculated on the basis of ligand field theory. The experimental magnetic susceptibilities for molybdenum ions, which are stabilized at the octahedral site in the perovskite lattice of Ba2ScMoⅤO6 and Sr2YMoⅤO6, were compared with the theoretical ones. We have tried to fit their temperature dependence of magnetic susceptibility with ligand field parameters, spin-orbit coupling constant ζSO, and orbital reduction parameter κ according to intermediate field coupling and strong field theory. Strong field coupling theory could not explain experimental curves without unrealistically large axial ligand field, since it ignores the mixing up between different state via spin-orbit interaction and ligand field. On the other hand, the intermediate field coupling theory could successfully reproduce experimental data in octahedral and trigonal ligand field. The fitting result demonstrates not only the fact that spin-orbit interaction is primarily responsible for the variation of magnetic behavior but also the fact that effective orbital overlap, enhanced by cubic crystal structure, reduces significantly orbital angular momentum as indicated by κ parameter.

Spin-Rotational Relaxation Study of Molecular Reorientation of Oblate Symmetric Top Molecules with Internal Extended Rotational Diffusion

  • Kim, Eun-Mi;Shin, Kook-Joe
    • Bulletin of the Korean Chemical Society
    • /
    • 제10권5호
    • /
    • pp.430-433
    • /
    • 1989
  • Molecular reorientation of oblate symmetric top molecules in the presence of internal rotation is investigated and an analytic expression for the spin-rotational relaxation rate of a nucleus attached to the internal rotor is obtained as a function of the internal angular momentum correlation time. The overall reorientation of the symmetric top is treated by the anisotropic rotational diffusion and the internal rotation is assumed to undergo modified extended rotational diffusion. The result is compared with the previous work for the prolate symmetric top molecule and it is shown that both results reduce to the same expression in the spherical top limit.

Rotational State Distribution of NO after Collisions with Fast Hydrogen Atom

  • 김유항
    • Bulletin of the Korean Chemical Society
    • /
    • 제16권5호
    • /
    • pp.436-438
    • /
    • 1995
  • Based on the collisional time-correlation function approach a general analytical expression has been derived for the double differential cross-section with respect to the scattering angle and the final rotational energy, which can be applied to molecules with non-zero electronic orbital angular momentum after collision with fast hydrogen atoms. By integrating this expression another very simple expression, which gives the final rotational distribution as a function of the rotational quantum number, has also been derived. When this expression is applied to NO(2Π1/2, v'=1) and NO(2Π3/2, v'=1, 2, 3), it can reproduce the experimental rotational distribution after collision with fast H atom very well. The average rotational quantum number and average rotational energy using this expression are also in good agreement with those deduced from the experimental distributions.

ELECTRONIC STRUCTURES AND MAGNETIC PROPERTIES OF HEUSLER COMPOUNDS: XMnSb (X=Ni, Pd, and Pt)

  • Youn, S.J.;Min, B.I.;Jang, Y.R.
    • 한국자기학회지
    • /
    • 제5권5호
    • /
    • pp.749-752
    • /
    • 1995
  • Electronic structures of the Heusler compounds, XMnSb (X=Ni, Pd, and Pt) are investigated systematically by using the linearized muffiu-tin orbital (LMTO) band method. LMTO band calculations yield that, by including the spinorbit interactions, the NiMnSb and PtMnSb are half-metallic, while PdMnSb is normal metallic at the experimental lattice constant. The effect of the spin-orbit interaction is substantial in PtMnSb, in contrast to NiMnSb and PdMnSb. The calculated X d and Mn 3d angular momentum projected local density of states's reveal that the hybridization between the Mn 3d X d states increases from X = Pt to Pd and Ni.

  • PDF

Vibration-Rotation Coupling in a Quasilinear Symmetric Triatomic Molecule

  • Lee, Jae-Shin
    • Bulletin of the Korean Chemical Society
    • /
    • 제15권3호
    • /
    • pp.228-236
    • /
    • 1994
  • The effect of the vibration mode coupling induced by the vibration-rotation interaction on total energy was investigated for the states with zero total angular momentum(J=0) in a quasilinear symmetric triatomic molecule of $AB_2$ type using a model potential function with a slight potential barrier to linearity. It is found that the coupling energy becomes larger for the levels of bend and asymmetric stretch modes and smaller for symmetric stretch mode as the excitation of the vibrational modes occurs. The results for the real molecule of $CH_2^+$, which is quasilinear, generally agree with the results for the model potential function in that common mode selective dependence of coupling energy is exhibited in both cases. The differences between the results for the model and real potential function in H-C-H system are analyzed and explained in terms of heavy mixing of the symmetric stretch and bend mode in excited vibrational states of the real molecule of $CH_2^+$. It is shown that the vibrational mode coupling in the potential energy function is primarily responsible for the broken nodal structure and chaotic behavior in highly excited levels of $CH_2^+$ for J= 0.

Spin-polarization and x-ray magnetic circular dichroism in GaAs

  • Zohar, S.;Ryan, P.J.;Kim, J.W.;Keavney, D.J.
    • Current Applied Physics
    • /
    • 제18권11호
    • /
    • pp.1182-1184
    • /
    • 2018
  • The combination of angular spin momentum with electronics is a promising successor to charge-based electronics. The conduction bands in GaAs may become spin-polarized via optical spin pumping, doping with magnetic ions, or induction of a moment with an external magnetic field. We investigated the spin populations in GaAs with x-ray magnetic circular dichroism for each of these three cases. We find strong anti-symmetric lineshapes at the Ga $L_3$ edge indicating conduction band spin splitting, with differences in line width and amplitude depending on the source of spin polarization.

Bar Formation and Evolution in Disk Galaxies with Classical Bulges

  • Seo, Woo-Young;Kim, Woong-Tae
    • 천문학회보
    • /
    • 제44권2호
    • /
    • pp.37.2-37.2
    • /
    • 2019
  • To study the effects of central mass concentration on the formation and evolution of galactic bars, we run fully self-consistent simulations of Milky Way-sized, isolated galaxies with initial classical bulges. We let the mass of a classical bulge mass less than 20% of the total disk mass, and vary the central concentration of a dark matter halo. We find that both classical bulge and halo concentration delay the bar formation and weaken the bar strength. The presence of a bulge increases the initial rotational velocity near the center and hence the bar pattern speed. Bars in galaxies with a more concentrated halo slowdown relatively rapidly as they lose their angular momentum through interaction with the halo. In some of our models, bars do not experience slowdown at the expense of the decrease in their moment of inertia as the bar evolves, with the resulting pattern speed similar to that of the bar in the Milky Way.

  • PDF

Experimental study on the spray characteristics of a dual-manifold liquid-centered swirl coaxial injector

  • Lee, Ingyu;Yoon, Jungsoo;Park, Gujeong;Yoon, Youngbin
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제15권4호
    • /
    • pp.444-453
    • /
    • 2014
  • A throttleable rocket engine enables operational possibilities such as the docking of spacecraft, maneuvering in a certain orbit and landing on a planet's surface, altitude control, and entrance to atmosphere-less planets. Thus, throttling methods have long been researched. However, dual-manifold injectors, which represent one throttling method, have been investigated less than others. In this study, dual-manifold and single-manifold injectors were compared to determine the characteristics of dual-manifold injectors. Also, the effects of gas injection were investigated with various F/O ratios. To investigate the characteristics, mass flow rate, spray pattern, spray angle, and droplet size were measured. The spray angle and droplet size were captured by indirect photography. About 30 images were taken to assess the spray patterns and spray angle. Also, 700 images were analyzed to understand the droplet distribution and targeting area, moving to the right from the centerline with 1.11-cm intervals. The droplet size was obtained from an image processing procedure. From the results, the spray angle showed two transition regions, due to swirl momentum in the swirl chamber regardless of the F/O ratio. The droplet size showed similar trends in both dual-manifold and single-manifold injectors except in the low mass flow rate region. In the case of the dual- manifold injector, the spray cone was not fully developed in the low mass flow rate region due to low angular momentum in the swirl chamber.

유동장의 이동속도측정을 위한 가시화 및 영상처리 방안 (Visualization and Image Processing for Measurement of Propagational Velocity of Shear Front)

  • 김재원;한상훈;안은영
    • 한국멀티미디어학회논문지
    • /
    • 제8권10호
    • /
    • pp.1322-1328
    • /
    • 2005
  • 점성 유체를 담고 쳐는 실린더가 회전운동을 시작하면 회전 원판의 원심력과 에크만 펌핑 효과에 의해 실린더 외벽의 각운동량이 유체에 전달되는 과정에서 자오면상의 유동이 생기게 되고, 이 때 유체의 특성에 따라 유동장의 운동량 획득 특성이 다르게 나타나게 된다. 본 연구에서는 뉴턴 유체와 비-뉴턴 유체의 유동장 획득에 대한 정보를 가시화 영상에서 검출하고 이를 기반으로 유체의 특성을 분석하는 방법을 제안한다. 영상으로부터 운동량이 가장 크게 변화하는 전단면(shear front)의 위치를 알아내기 위해서, 유체의 운동량이 영상에서의 밝기정보로 나타나도록 실험환경을 구성한다. 입력 영상으로부터 유체의 운동량과 흐름을 가시화 할 수 있도록 가시화 매개 물질을 사용하여 영상을 획득하고, 영상에서 에크만 경계층의 전단면을 찾아내어 이동거리를 계산함으로써 유체의 특성을 분석하는 방안을 제시한다. 또한 유동장에 대해, LDV(Laser Doppler Velocimetry)로 측정한 값과 영상으로부터 얻은 값을 비교함으로써 제안된 방법에 대한 정확성을 검증하고, 검증된 데이터를 기반으로 비-뉴턴 유체와 뉴턴 유체에 대한 특성을 분석한다.

  • PDF