This paper deals with mathmatical of an induction motor, considering non-linearity in the torque balance equation under closed loop operation with a reference speed. A controller based on Adaptive Nuro-Fuzzy Inference System (ANFIS) is developed to minimize overshoot and settling time following sudden changes in load torque. The overall system is modeled and simulated using the Matlab/simulink and Fuzzy Logic Toolbox. The advantages of fuzzy logic and neural network based fuzzy logic controller. Required training data the ANFIS controller is generated by simulation of the anti-windup PI controller is eliminated using the ANFIS controller. The transient deviation of the response from the set reference following variation in load torque is found to be negligibly samll along with a desirable reduction in settling time for the ANFIS controller.
This study proposes an adaptive neuro-fuzzy inference system (ANFIS)-based rotor position controller for brushless direct current (BLDC) motors to improve the control performance of the drive under transient and steady-state conditions. The dynamic response of a BLDC motor to the proposed ANFIS controller is considered as standard reference input. The effectiveness of the proposed controller is compared with that of the proportional integral derivative (PID) controller and fuzzy PID controller. The proposed controller solves the problem of nonlinearities and uncertainties caused by the reference input changes of BLDC motors and guarantees a fast and accurate dynamic response with an outstanding steady-state performance. Furthermore, the ANFIS controller provides low torque ripples and high starting torque. The detailed study includes a MATLAB-based simulation and an experimental prototype to illustrate the feasibility of the proposed topology.
We, in this paper, design the Sugeno-models fuzzy controller by using the membership function modification algorithm and ANFIS, which are clustering and learning the input-output data. The membership function modification algorithm constructs the more concrete fuzzy controller by clustering the input-output data from the fuzzy inference system. ANFIS construct the Sugeno-models fuzzy controller by learning the input-output data from the above controller. We showed that the fuzzy controller designed by our method could have the stable learning and the enhanced performance.
The problem of spacecraft attitude control is solved using an adaptive neuro-fuzzy inference system (ANFIS). An ANFIS produces a control signal for one of the three axes of a spacecraft's body frame, so in total three ANFISs are constructed for 3-axis attitude control. The fuzzy inference system of the ANFIS is initialized using a subtractive clustering method. The ANFIS is trained by a hybrid learning algorithm using the data obtained from attitude control simulations using state-dependent Riccati equation controller. The training data set for each axis is composed of state errors for 3 axes (roll, pitch, and yaw) and a control signal for one of the 3 axes. The stability region of the ANFIS controller is estimated numerically based on Lyapunov stability theory using a numerical method to calculate Jacobian matrix. To measure the performance of the ANFIS controller, root mean square error and correlation factor are used as performance indicators. The performance is tested on two ANFIS controllers trained in different conditions. The test results show that the performance indicators are proper in the sense that the ANFIS controller with the larger stability region provides better performance according to the performance indicators.
State dependent Riccati equation (SDRE) control technique has been widely used in the control society. Although it solves nonlinear optimal control problems, which minimizes state error and control efforts simultaneously, it has drawbacks when it is to be applied to the real time systems in that it requires much computational efforts. So the real time system whose computational ability is limited (for example, satellites) cannot afford to use SDRE controller. To solve this problem, a hybrid controller which is based on MSDRE (Modified SDRE) and ANFIS (Adaptive Neuro-Fuzzy Inference System) has been proposed by Abdelrahman et al. (2010). We propose a hybrid controller based on SDRE and ANFIS, and apply the hybrid controller to the hardware attitude simulator to perform a HIL (Hardware-In-the-Loop) simulation. Through HIL simulation, it is demonstrated that the hybrid controller satisfies the control requirement and the computation load is reduced significantly. In addition, the effects of statistical properties of the ANFIS training data to the performance of the ANFIS controller have been analyzed.
International Journal of Computer Science & Network Security
/
제24권2호
/
pp.169-177
/
2024
Interacting Spherical tank has maximum storage capacity is broadly utilized in industries because of its high storage capacity. This two tank level system has the nonlinear characteristics due to its varying surface area of cross section of tank. The challenging tasks in industries is to manage the flow rate of liquid. This proposed work plays a major role in controlling the liquid level in avoidance of time delay and error. Several researchers studied and investigated about reducing the nonlinearity problem and their approaches do not provide better result. Different types of controllers with various techniques are implemented by the proposed system. Intelligent Adaptive Neuro Fuzzy Inference System (ANFIS) based Sliding Mode Controller (SMC) with Fractional order PID controller is a novel technique which is developed for a liquid level control in a interacting spherical tank system to avoid the external disturbances perform better result in terms of rise time, settling time and overshoot reduction. The performance of the proposed system is obtained by analyzing the simulation result obtained from the controller. The simulation results are obtained with the help of FOMCON toolbox with MATLAB 2018. Finally, the performance of the conventional controller (FOPID, PID-SMC) and proposed ANFIS based SMC-FOPID controllers are compared and analyzed the performance indices.
In this paper, we design an Adaptive Neuro-Fuzzy Inference System(ANFIS) Precompensator for the performance improvement of conventional proportional integral derivative (PID) controller that the governor system of power plant constantly maintains the load frequency of two-area power system. The ANFIS Precompensator is expressed as the membership functions of premise parameters and the linear combination of consequent parameters by Sugeno's fuzzy if-then rules using nonlinear input-output relation for the set point automatic modification maintaining conventional PID controller. The proposed compensation design technique is hoped to be satisfactory method overcome difficulty of exact modelling and arising problems by the complex nonlinearities of power system, and our design shows merit that is easily implemented by adding an ANFIS precompenastor to an existing PID controller without replacement.
Jaekyung Jung;Ohmin Kwon;Lee, Sangmoon;Sangchul Won
제어로봇시스템학회:학술대회논문집
/
제어로봇시스템학회 2000년도 제15차 학술회의논문집
/
pp.374-374
/
2000
In this paper, we developed an ANFIS controller through ES algorithm for disturbances rejection in Hot Rolling. The looper of a Hot Rolling is installed between each pair of stands and plays key roles to enhance the product quality of the strip by controlling the tension and the width of the strip. At the same time, the AGC on top of the Mill produces a strip with the desired thickness through pressing its Mill. Between both, however, interactions are caused by coupling effects among strip tension, looper angle and strip thickness. In addition, in case disturbances, it is more difficult to keep strip quantities desirable. So we present an ANFIS controller through ES algorithm which is able to identify fuzzy rule with input/output data and update itself through output errors.
Control algorithms are the most important aspects in successful control of structures against earthquakes. In recent years, intelligent control methods rather than classical control methods have been more considered by researchers, due to some specific capabilities such as handling nonlinear and complex systems, adaptability, and robustness to errors and uncertainties. However, due to lack of learning ability of fuzzy controller, it is used in combination with a genetic algorithm, which in turn suffers from some problems like premature convergence around an incorrect target. Therefore in this research, the introduction and design of the Fuzzy Cooperative Coevolution (Fuzzy CoCo) controller and Adaptive Neural-Fuzzy Inference System (ANFIS) have been innovatively presented for semi-active seismic control. In this research, in order to improve the seismic behavior of structures, a semi-active control of building using Magneto Rheological (MR) damper is proposed to determine input voltage of Magneto Rheological (MR) dampers using ANFIS and Fuzzy CoCo. Genetic Algorithm (GA) is used to optimize the performance of controllers. In this paper, the design of controllers is based on the reduction of the Park-Ang damage index. In order to assess the effectiveness of the designed control system, its function is numerically studied on a 9-story benchmark building, and is compared to those of a Wavelet Neural Network (WNN), fuzzy logic controller optimized by genetic algorithm (GAFLC), Linear Quadratic Gaussian (LQG) and Clipped Optimal Control (COC) systems in terms of seismic performance. The results showed desirable performance of the ANFIS and Fuzzy CoCo controllers in considerably reducing the structure responses under different earthquakes; for instance ANFIS and Fuzzy CoCo controllers showed respectively 38 and 46% reductions in peak inter-story drift ($J_1$) compared to the LQG controller; 30 and 39% reductions in $J_1$ compared to the COC controller and 3 and 16% reductions in $J_1$ compared to the GAFLC controller. When compared to other controllers, one can conclude that Fuzzy CoCo controller performs better.
In this study an ANFIS-based trajectory tracking motion control algorithm is proposed for autonomous garage and parallel parking of a model car. The ANFIS controller is trained off-line using data set which obtained by Mandani fuzzy inference system and thereby the processing time decreases almost in half. The controller with a steering delay compensator is tuned through simulations performed under MATLAB/Simulink environment. Experiments are carried out with the model car for garage and parallel parking. The experimental results show that the trajectory tracking performance is satisfactory under various initial and road conditions
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.