• Title/Summary/Keyword: AMESim simulation code

Search Result 18, Processing Time 0.027 seconds

Analysis of Dynamic Characteristics in Two-stage Injection for CRDi Injectors Based on AMESim Environment (AMESim기반 CRDi용 인젝터의 2단분사 동적거동 특성해석)

  • Jo, In-Su;Kwon, Ji-Won;Lee, Jin-Wook
    • Journal of ILASS-Korea
    • /
    • v.17 no.2
    • /
    • pp.57-63
    • /
    • 2012
  • For reduction of CO, NOx and soot emission emitted by diesel diffusion combustion, the authors focused on injection actuator to improve fuel availability inside combustion chamber. In this study, it was investigated the internal dynamic characteristics of two-stage injection with diesel injectors with different driving type for the common rail direct injection by using the AMESim simulation code. The analysis parameter defined such as fuel pressure, injection hole's diameter and driven voltage. As the results, it was shown that the piezo-driven injector had a faster response and had better control capability than the solenoid-driven injector. It was found the piezo-driven injector can be utilized effectively as multiple injector than solenoid-driven injector.

Verification and Hydraulic Model Development of 3rd Generation Piezo Injector for CRDi System in Passenger Vehicle (승용CRDi용 3세대 피에조 인젝터 유압해석모델 개발 및 검증)

  • Jo, Insu;Jeong, Myoungchul;Lee, Jinwook
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.4
    • /
    • pp.181-187
    • /
    • 2013
  • Performance of DI diesel engine with high fuel injection method is directly related to its emission characteristics and fuel consumption. In this study, numerical model of 3rd generation piezo-driven injector was designed to analyze the hydraulic performance. Also the injection response characteristics was investigated by using the AMESim simulation code. From this study, it was shown that 3rd generation piezo-driven injector had a faster response and had better control capability due to its hydraulic bypass-circuit that has potential to higher hydraulic characteristics and improved accuracy of injected fuel quantity.

Analysis of Fast Injection Response Characteristics Between Solenoid and Piezo-Driven Injector (솔레노이드 및 피에조 인젝터의 고속분사 응답성 해석)

  • Jo, In-Su;Lee, Jung-Hyup;Lee, Jin-Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.10
    • /
    • pp.971-977
    • /
    • 2012
  • It is well known that the performance of a diesel injector is directly related to the power, emission, and fuel consumption of the diesel combustion engine. In this study, the injection response characteristics of CRDi injectors driven by a solenoid coil and a piezoceramic were investigated by using the AMESim simulation code. Some analytical parameters such as the fuel pressure and hole diameter were considered. From this study, it was shown that the piezo-driven injector had a faster response and had better control capability than the solenoid-driven injector. In addition, it was found that the piezo-driven injector can be utilized more effectively in a multiple injection scheme than a solenoid-driven injector.

Analysis of Sensitivity Characteristics with AMESim Model for Piezo Injector (AMESim기반 피에조 인젝터용 해석모델의 민감도 특성 해석)

  • Jo, Insu;Kwon, Jiwon;Lee, Jinwook
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.2
    • /
    • pp.17-25
    • /
    • 2013
  • Performance of DI diesel engine with high fuel injection method is directly related to the emission characteristics and fuel consumption. At present, diesel injection system with piezo element is replacing conventional solenoid type due to their faster electro-mechanical properties. In this study, it was investigated the sensitivity characteristics regarding internal hydraulic modeling based on the AMESim environment of piezo-driven injector The analytic parameter for this study defined such as In/Out orifice, injection hole's diameter and driven voltage on piezo stack. As the results, it was shown that these parameter influence on a fast response characteristics of piezo-driven injector. Also we found fuel pressure recovery time is faster about 0.1 ms due to larger IN orifice diameter. And larger OUT orifice diameter occurs maximum pressure drop with faster its timing of about 0.2 ms.

Comparison Analysis of Dynamic Characteristics of Servo-hydraulic Piezo-driven Injector between 3-way and Bypass-circuit Type (3-way형과 Bypass형 서보유압 피에조 인젝터의 구동특성 비교)

  • Jo, Insu;Jeong, Myoungchul;Lee, Jinwook
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.169-175
    • /
    • 2013
  • CRDi technology of diesel engine was developed from in the early 2000s due to a need to increase fuel efficiency and environment care. Especially, high-pressure fuel injection system in CRDi system which has a fuel injection unit including an injector, a fuel pump and common-rail, etc. becomes possible to make the exhaust gas clean as well as power improvement. In this study, comparison of dynamic characteristics of servo-hydraulic piezo-driven injector with 3-way and bypass-circuit type was analyzed by using the AMESim code. As results of this study, it found the bypass-circuit inside servo-hydraulic piezo injector can cause a faster injection response than that of the 3-way type. Also it was shown that bypass-circuit type had better control capability due to hydraulic bypass system.

Analysis of Dynamic Characteristics and Performance of Solenoid Valve for Pressurization Propellant Tank (추진제탱크 가압용 솔레노이드밸브의 작동특성 분석 및 해석)

  • Jang, Jesun;Kim, Byunghun;Han, Sangyeop
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.2
    • /
    • pp.128-134
    • /
    • 2013
  • A 2-way solenoid valve regulates to maintain the pressure of ullage volume of propellant tanks when the command is given by control system for the liquid-propellant feeding system of space launch vehicle. The simulation model of solenoid valve for pressurization is designed with AMESim to verify the designs and evaluate the dynamic characteristics and pneumatic behaviors of valve. To improve the accuracy of the model, numerical flow analysis by using FLUNET code. The simulation results of their operating durations of valve by AMESim analysis are matched up with the results of experiments and validate valve model. Using the model, we analyze performance of valve; opening/closing pressure, operating time on various design factors of basic valve and control valve; geometrical size of valve seat, ratio of basic valve and sealing area.

A Study on Injection Characteristics of Piezo Injector with Bypass by Various Piezo Stack and Applied Voltage (바이패스 방식 피에조 인젝터의 피에조 적층 및 인가전압에 따른 연료분사 특성 연구)

  • Cho, Insu;Kim, Wootaek;Lee, Jinwook
    • Journal of ILASS-Korea
    • /
    • v.25 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • In the common rail fuel injection system, which is the core of diesel high efficiency and NOX reduction, injection strategies such as high pressure injection of fuel, accurate injection rate control, and multistage injection are important to increase fuel atomization. In this study, the bypass type piezo injector for the electronic control based common rail injection system applied to diesel fuel vehicle was studied. In particular, the injection rate and internal fuel flow characteristics of the high-pressure injector according to the piezo stacking number and applied voltage were analyzed by theoretical numerical method. When the applied voltage changes, it is determined that additional fuel flow through the bypass compensates for the reduced valve driving force due to the change in the driving voltage.

Effects of Working Fuel Temperature on Injection Characteristics of Bypass Type Piezo Injector (작동 연료온도가 Bypass type 피에조 인젝터의 분사 특성에 미치는 영향)

  • Cho, Insu;Lee, Jinwook
    • Journal of ILASS-Korea
    • /
    • v.24 no.2
    • /
    • pp.66-72
    • /
    • 2019
  • Diesel vehicles suffer from poor starting and running problems at cold temperatures. Diesel vehicles have the characteristic that CO and PM are reduced or similarly discharged when going from low temperature to high temperature. In this study, a bypass type piezo injector for electronic control based common rail injection system was used. Numerical analysis using injector drive analysis model was performed to analyze injector drive and internal fuel flow characteristics according to fuel temperature change. The results show that the rate of density change due to the fuel temperature is proportional, and that the effect of the kinematic viscosity is relatively large between $-20^{\circ}C$ and $0^{\circ}C$. Comparing the results of temperature condition at $0^{\circ}C$ and $20^{\circ}C$, it is considered that the viscosity is more correlated with the needle displacement than the pressure chamber of the delivery chamber.

Hydraulic Modal Analysis of High-Pressure Common-rail Fuel Injection System for Passenger Vehicle (승용 CR 연료분사시스템에 대한 유압 Modal 분석)

  • Sung, Gisu;Kim, Sangmyeong;Kim, Jinsu;Lee, Jinwook
    • Journal of ILASS-Korea
    • /
    • v.20 no.1
    • /
    • pp.14-19
    • /
    • 2015
  • Recently, R&D demand for environmental friendly vehicle has rapidly increased due to its global environmental issues such as global warming, energy and economic crisis. Under this situation, the most realistic alternative way for environmental friendly vehicle is a clean diesel vehicle. The common-rail fuel injection system, as key technology of clean diesel vehicle, consists of a high pressure pump, common-rail, high pressure fuel line and electronic control injector. In common-rail high-pressure fuel injection system, high pressure wave of injection system and geometry of injector elements have a major effects on high-pressure fuel spray. Therefore, in this study, the numerical model was developed for analysis about the common-rail fuel pressure pulsation by using AMESim code. We could secure stability of common-rail high-pressure fuel injection system through optimal design of fuel line.

A Study on the Dynamic Characteristics of AGV driving device (Auto Guide Vehicle) (AGV 구동부의 동특성 해석)

  • 허형석;서용권
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2002.03a
    • /
    • pp.235-239
    • /
    • 2002
  • In this study, a AGV(Auto Guide Vehicle) is presented and the dynamic characteristics of AGV driving device is investigated. The design factors of hydraulic pump and motor is an important component for it's performance characteristics. the dynamic characteristics of hydraulic pump and motor is simulated by using commercial code AMESim. Simulation results show that each behavior can be predicted with changing the various parameters.

  • PDF