• Title/Summary/Keyword: AM materials

Search Result 474, Processing Time 0.024 seconds

Development of the Graphite-Moderated Neutron Calibration Fields Using 241Am-Be Sources in JAEA-FRS

  • Nishino, Sho;Tanimura, Yoshihiko;Ebata, Yoshiaki;Yoshizawa, Michio
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.3
    • /
    • pp.211-215
    • /
    • 2016
  • Background: The moderated neutron calibration fields using $^{241}Am$-Be sources and a graphite moderator have been constructed at the Facility of Radiation Standard (FRS) in the Japan Atomic Energy Agency (JAEA). Materials and Methods: The neutron spectra of the fields were evaluated by the Monte-Carlo calculations and measurements using the Bonner Multi-sphere Spectrometer. Results and Discussion: The fields have continuous neutron spectra from several MeV to thermal neutron energy, with fluence-averaged energies of 0.84 MeV and 0.60 MeV. Reference values of fluence rates and ambient/personal dose equivalent rates were determined from neutron spectra by measurements. Conclusion: Currently, the fields are available for calibration or performance test of neutron measuring instruments.

Dyeing Properties of Easily Dyeable m-Aramid Knit Fabric (염색이 용이한 메타 아라미드 편성물의 염색성에 관한 연구)

  • Lee, Bum Hoon
    • Textile Coloration and Finishing
    • /
    • v.32 no.3
    • /
    • pp.128-134
    • /
    • 2020
  • Heat and flame protecting cloth is usually made of meta aramid fiber because of its own properties. But the high inter molecular hydrogen bonding and high Tg is the reason of the difficulty to dye meta aramid fiber. Recently, it was commercialized that the easily dyeable meta aramid fiber(AMD) for improving dyeability. In this study, the dyeing properties of AMD dyed with cationic dyes were investigated. The K/S values of AMD were 5~10% higher than these of general meta aramid fiber(AM) in the case of 1%owf caused by the lower crystallinity of AMD. The difference between K/S values of AMD and AM was increased as increasing dyeing concentration. The washing and rubbing fastness grade of AM and AMD were similar and good to very good.

투명 산화물 트랜지스터

  • Park, Sang-Hui;Hwang, Chi-Seon;Jo, Du-Hui;Yu, Min-Gi;Yun, Seong-Min;Jeong, U-Seok;Byeon, Chun-Won;Yang, Sin-Hyeok;Jo, Gyeong-Ik;Gwon, O-Sang;Park, Eun-Suk
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.13.1-13.1
    • /
    • 2009
  • Transparent electronics has attracted many interests, for it can open new applications for consumer electronics, transportation, business, and military. Among them, display backplane, thin film transistor (TFT) array would be the most attractive application. Many researchers have been investigating oxide semiconductors for transparent channel material of TFT since the report for transparent amorphous oxide semiconductor (TAOS) TFT by Hosono group and ZnO TFT by Wager group. Especially, oxide TFTs have been intensively investigated during a couple of years since the first demonstration of ZnO-TFT driving AM-OLED. Many papers regarding the fabrication and performance of oxide TFTs, and active matrix display driven by oxide TFTs have been reported. Now lots of people have confidence in the competitiveness of oxide TFTs for the backplane of AM-Display. Especially, high mobility, uniformity, fairly good stability, and low cost process make oxide TFTs applied even to a large size AM-OLED. Last year, Samsung mobile display, former SID, reported 12" AM-OLED driven by IZGO-TFT and it seems that the remained issue for the mass production is the bias temperature stability. Here, we will introduce the application of oxide TFT and important issue for oxide TFT to be used for the direct printing.

  • PDF

Characterization and Mechanical Properties of Stainless Steel 316L Fabricated Using Additive Manufacturing Processes (적층식 제조 공정을 활용한 스테인레스 316L 제작기술의 특징과 기계적 속성)

  • Choi, Cheol;Jung, Mihee
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.1
    • /
    • pp.129-135
    • /
    • 2021
  • Recently, additive manufacturing (AM) technology such as powder bed fusion (PBF) and directed energy deposition (DED) are actively attempted as consumers' needs for parts with complex shapes and expensive materials. In the present work, the effect of processing parameters on the mechanical properties of 316L stainless steel coupons fabricated by PBF and DED AM technology was investigated. Three major mechanical tests, including tension, impact, and fatigue, were performed on coupons extracted from the standard components at angles of 0, 45, 90 degrees for the build layers, and compared with those of investment casting and commercial wrought products. Austenitic 316L stainless steel additively manufactured have been well known to be generally stronger but highly vulnerable to impact and lack in elongation compared to casting and wrought materials. The process-induced pore density has been proved the most critical factor in determining the mechanical properties of AM-built metal parts. Therefore, it was strongly recommended to reduce those lack of fusion defects as much as possible by carefully control the energy density of the laser. For example, under the high energy density conditions, PBF-built parts showed 46% higher tensile strength but more than 75% lower impact strength than the wrought products. However, by optimizing the energy density of the laser of the metal AM system, it has been confirmed that it is possible to manufacture metal parts that can satisfy both strength and ductility, and thus it is expected to be actively applied in the field of electric power section soon.

Freezing Depth Analysis Considering Environmental Factors and Physical Properties of Pavement Materials (환경변수 및 도로재료의 특성을 고려한 동결깊이 분석)

  • Kim, Suk Myung;Rhee, Suk Keun;Kim, Suk Nam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1D
    • /
    • pp.55-61
    • /
    • 2009
  • In this research freezing depth analyses were performed for the recent 9 project field sites using FrostAM which is a freezing analysis model developed recently within the country and a model based on regional environmental factors and physical properties of pavement materials. The environmental factors needed for freezing depth analysis were obtained from the meteorological agency website. And there were laboratory tests and analyses using a measuring device for properties of unsaturated soil for the field site samples across country to obtain hydrographical properties among physical properties. The freezing depths analyzed by FrostAM were deeper in the range of 14cm~44cm than those based on freezing index. It is considered that the freezing depths based on freezing index were overestimated. And there are considerable differences among the freezing depths based on freezing index which were designed by different designers.

Study of the Effects of Sa-am Acupuncture on Upper Limb Spasticity in Patients with Chronic Post-stroke Hemiparesis using Real-time Sonoelastography (실시간 탄성초음파를 이용한 만성 뇌졸중 후 편마비 환자의 상지 강직에 대한 사암침 효과 연구)

  • Baek, Kyung-Min;Kwon, Dong-Rak;Park, Gi-Young
    • The Journal of Internal Korean Medicine
    • /
    • v.35 no.1
    • /
    • pp.1-11
    • /
    • 2014
  • Objectives : To investigate the effects of Sa-am acupuncture on muscle architecture and elastic properties of the spastic elbow flexor and to evaluate the correlation between clinical findings and parameters of real-time sonoelastography (RTS) in patients with chronic post-stroke hemiparesis. Materials and Methods : Seven patients (five males, two females) with chronic post-stroke hemiparesis were included. Sa-am acupuncture of Ganseunggyeok (肝勝格: LU8 LR4 補, HT8 LR2 瀉) was applied to the unaffected side 3 times a week for 4 weeks. During each acupuncture treatment period, patients were requested to exercise their affected arm, and spasticity and functional recovery outcomes of the affected arm were evaluated before and after Sa-am acupuncture treatment. Clinical outcomes were assessed using motricity index (MI), modified Ashworth scale (MAS), Fugl-Meyer assessment scale (FMA) and modified Barthel index (MBI) for elbow flexor spasticity. RTS images indicate the relative hardness of the examined muscles ranged from red (hard) to purple (soft) for color-scale, and from black (hard) to white (soft) for hue scale. Color and hue histograms of the biceps brachii and brachialis were analyzed using Image J software, and median red, blue, and hue pixel intensity were obtained. Results : MI and FMA score significantly increased and MAS score significantly decreased (p<0.05). F-wave maximal amplitude of affected abductor pollicis brevis significantly decreased (p<0.05). Muscle thickness of affected brachialis significantly increased (p<0.05). Red and green pixel intensity of affected brachialis significantly decreased (p<0.05). Conclusions : Our study revealed that Sa-am acupuncture is effective as a useful and safe treatment for spasticity in chronic post-stroke hemiparesis.

Production of Casting Cores using Powder Bed Fusion Techniques (분말적층용융 기술을 활용한 산업용 중자 제작)

  • Choi, Jin-Yong;Shin, Seung-Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.5
    • /
    • pp.239-244
    • /
    • 2019
  • Traditional casting methods require long production lead time and high cost while not accommodating design changes easily. One of the technological alternatives to improve casting method to meet diversifying needs is Additive Manufacturing (AM). Among the 7 AM techniques, Powder Bed Fusion (PBF) is deemed most appropriate for casting applications. Currently, most AM machines are imported; therefore limiting the scope of available services and applications. This paper explores the domestic development of AM machines as well as the applications in casting. Each chapter describes development phases of PBF machines, applicable materials and parameter settings, while the last chapter illustrates a successful case of additive manufacturing industrial casting cores.

Development of a Multi-material Stereolithography System (다중재료 광조형장치 개발)

  • Kim, Ho-Chan;Choi, Jae-Won;Wicker, Ryan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.3
    • /
    • pp.135-141
    • /
    • 2010
  • Researchers continue to explore possibilities for expanding additive manufacturing (AM) technologies into direct product manufacturing. One limitation is in the materials available for use in AM that can meet the needs of end-use applications. Stereolithography (SL) is an AM technology well known for its precision and high quality surface finish capabilities. SL builds parts by selectively crosslinking or solidifying photo-curable liquid resins, and the resin industry has been continuously developing new resins with improved performance characteristics. This paper introduces a unique SL machine that can fabricate parts out of multiple SL materials. The technology is based on using multiple vats positioned on a rotating vat carousel that contain different photo-curable materials. To change the material during the process, the build platform is raised out of the current vat, a new vat with a different material is rotated under the platform, and the platform is submerged into the new vat so that the new material can be used. This paper introduces a new vat exchange mechanism, cleaning process, recoating process, resin leveling mechanism and process planning technologies for the implementation of multiple material SL. An overview of the system framework is provided and the system integration and control software is described. In addition, several multiple material test parts are designed, fabricated, and described.

Bioactive Characteristics of the Astragalus Membranaceus Ethanol & Bioconversion Extracts as functional Cosmetic materials (기능성 화장품 소재로서의 황기 에탄올 추출물과 황기 생물전환 추출물의 생리활성 특성)

  • Bae, Hye-Kyung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.5
    • /
    • pp.1265-1272
    • /
    • 2021
  • This study was intended to investigate the potential of Astragalus membranaceus ethanol extract(AM) and Astragalus membranaceus bioconversion extract(AMB) as functional cosmetic materials. To confirm the antioxidant effect, polyphenol and flavonoid contents were measured, and a study was conducted on skin cell toxicity and skin cell aging through cell experiments. As a result of the antioxidant experiment, the content of polyphenols and flavonoids increased in a concentration-dependent manner in the effects of polyphenols and flavonoids, and it was confirmed that the ethanol extracts were higher than the bioconversion extracts. It was confirmed that the AM and AMB increased the MMP1 expression inhibitory effect in a concentration-dependent manner in HDF cells. Therefore, this study is considered to be very useful as a functional cosmetic material in terms of antioxidant and skin aging prevention when using AM and AMB as functional cosmetic materials.

3D Printed Building Technology using Recycling Materials (리사이클링 원료를 사용한 건축용 3D 프린팅 기술 동향)

  • Baek, Chul-Seoung;Seo, Jun-Hyung;Cho, Jin-Sang;Ahn, Ji-Whan;Cho, Kye-Hong
    • Resources Recycling
    • /
    • v.27 no.1
    • /
    • pp.3-13
    • /
    • 2018
  • 3D printing, also known as Additive Manufacturing (AM), is being positioned as a new business model of revolutionizing paradigms of existing industries. Launched in early 2000, 3D printing technology for architecture has also advanced rapidly in association with machinery and electronics technologies mostly in the United States and Europe. However, 3D printing systems for architecture require different mechanical characteristics from those of cement/concrete raw materials used in existing construction methods. Accordingly, in order to increase utilization of raw materials produced in the cement and resource recycling industry, it is necessary to develop materials processing and utilization technology, to secure new property evaluation and testing methods, and to secure database related to environmental stability for a long period which aims to reflect characteristics of an architectural 3D printing technology.