• Title/Summary/Keyword: AM materials

Search Result 477, Processing Time 0.031 seconds

Improved Power Conversion Efficiency of Dye-Sensitized Solar Cells Assisted with phosphor materials Scattering layer

  • Lee, Yong-Min;Choi, Hyun Ji;Kim, Dong In;Lee, Yul Hee;Yu, Jung-Hoon;Kim, Jee Yun;Seo, Hyeon Jin;Hwang, Ki-Hwan;Nam, Sang Hun;Boo, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.408.2-409
    • /
    • 2016
  • Theoretically, the dye-sensitized solar cells (DSSCs) are high efficiency solar cells. However DSSCs have low power conversion efficiency (PCE) than silicon based solar cells. In this study, we use the phosphor materials, such as $Y_2O_3:Eu$ (Red), $Zn_2SiO_4:Mn$ (Green), $BaMgAl_{14}O_{23}:Eu$ (Blue), to enhance the PCE of DSSCs. Three phosphors were prepared and used as an effective scattering layer on the transparent $TiO_2$ with doctor blade method. We confirmed that the three scattering layers improve the PCE and Jsc due to the light harvesting enhancement via increased the scattering and absorbance in visible range. Under the sun illumination AM 1.5 conditions, the PCE of the mesoporous $TiO_2$ based DSSCs is 5.18 %. The PCE of the DSSCs with Y2O3:Eu, $Zn_2SiO_4:Mn$ and $BaMgAl_{14}O_{23}:Eu$ as scattering layer were enhanced to 5.66 %, 5.72% and 5.82%, respectably. In order to compare the optical properties change, DSSCs were measured by EQE, reflectance and PCE. At the same time, FE-SEM and XRD were used to confirm the structural changes of each layer.

  • PDF

Study of the Carrier Injection Barrier by Tuning Graphene Electrode Work Function for Organic Light Emitting Diodes OLED (일함수 변화를 통한 그래핀 전극의 배리어 튜닝하기)

  • Kim, Ji-Hun;Maeng, Min-Jae;Hong, Jong-Am;Hwang, Ju-Hyeon;Choe, Hong-Gyu;Mun, Je-Hyeon;Lee, Jeong-Ik;Jeong, Dae-Yul;Choe, Seong-Yul;Park, Yong-Seop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.111.2-111.2
    • /
    • 2015
  • Typical electrodes (metal or indium tin oxide (ITO)), which were used in conventional organic light emitting devices (OLEDs) structure, have transparency and conductivity, but, it is not suitable as the electrode of the flexible OLEDs (f-OLEDs) due to its brittle property. Although Graphene is the most well-known alternative material for conventional electrode because of present electrode properties as well as flexibility, its carrier injection barrier is comparatively high to use as electrode. In this work, we performed plasma treatment on the graphene surface and alkali metal doping in the organic materials to study for its possibility as anode and cathode, respectively. By using Ultraviolet Photoemission Spectroscopy (UPS), we investigated the interfaces of modified graphene. The plasma treatment is generated by various gas types such as O2 and Ar, to increase the work function of the graphene film. Also, for co-deposition of organic film to do alkali metal doping, we used three different organic materials which are BMPYPB (1,3-Bis(3,5-di-pyrid-3-yl-phenyl)benzene), TMPYPB (1,3,5-Tri[(3-pyridyl)-phen-3-yl]benzene), and 3TPYMB (Tris(2,4,6-trimethyl-3-(pyridin-3-yl)phenyl)borane)). They are well known for ETL materials in OLEDs. From these results, we found that graphene work function can be tuned to overcome the weakness of graphene induced carrier injection barrier, when the interface was treated with plasma (alkali metal) through the value of hole (electron) injection barrier is reduced about 1 eV.

  • PDF

Simulation Study of Front-Lit Versus Back-Lit Si Solar Cells

  • Choe, Kwang Su
    • Korean Journal of Materials Research
    • /
    • v.28 no.1
    • /
    • pp.38-42
    • /
    • 2018
  • Continuous efforts are being made to improve the efficiency of Si solar cells, which is the prevailing technology at this time. As opposed to the standard front-lit solar cell design, the back-lit design suffers no shading loss because all the metal electrodes are placed on one side close to the pn junction, which is referred to as the front side, and the incoming light enters the denuded back side. In this study, a systematic comparison between the two designs was conducted by means of computer simulation. Medici, a two-dimensional semiconductor device simulation tool, was utilized for this purpose. The $0.6{\mu}m$ wavelength, the peak value for the AM-1.5 illumination, was chosen for the incident photons, and the minority-carrier recombination lifetime (${\tau}$), a key indicator of the Si substrate quality, was the main variable in the simulation on a p-type $150{\mu}m$ thick Si substrate. Qualitatively, minority-carrier recombination affected the short circuit current (Isc) but not the opencircuit voltage (Voc). The latter was most affected by series resistance associated with the electrode locations. Quantitatively, when ${\tau}{\leq}500{\mu}s$, the simulation yielded the solar cell power outputs of $20.7mW{\cdot}cm^{-2}$ and $18.6mW{\cdot}cm^{-2}$, respectively, for the front-lit and back-lit cells, a reasonable 10 % difference. However, when ${\tau}$ < $500{\mu}s$, the difference was 20 % or more, making the back-lit design less than competitive. We concluded that the back-lit design, despite its inherent benefits, is not suitable for a broad range of Si solar cells but may only be applicable in the high-end cells where float-zone (FZ) or magnetic Czochralski (MCZ) Si crystals of the highest quality are used as the substrate.

Effects of Al-doping on IZO Thin Film for Transparent TFT

  • Bang, J.H.;Jung, J.H.;Song, P.K.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.207-207
    • /
    • 2011
  • Amorphous transparent oxide semiconductors (a-TOS) have been widely studied for many optoelectronic devices such as AM-OLED (active-matrix organic light emitting diodes). Recently, Nomura et al. demonstrated high performance amorphous IGZO (In-Ga-Zn-O) TFTs.1 Despite the amorphous structure, due to the conduction band minimum (CBM) that made of spherically extended s-orbitals of the constituent metals, an a-IGZO TFT shows high mobility.2,3 But IGZO films contain high cost rare metals. Therefore, we need to investigate the alternatives. Because Aluminum has a high bond enthalpy with oxygen atom and Alumina has a high lattice energy, we try to replace Gallium with Aluminum that is high reserve low cost material. In this study, we focused on the electrical properties of IZO:Al thin films as a channel layer of TFTs. IZO:Al were deposited on unheated non-alkali glass substrates (5 cm ${\times}$ 5 cm) by magnetron co-sputtering system with two cathodes equipped with IZO target and Al target, respectively. The sintered ceramic IZO disc (3 inch ${\phi}$, 5 mm t) and metal Al target (3 inch ${\phi}$, 5 mm t) are used for deposition. The O2 gas was used as the reactive gas to control carrier concentration and mobility. Deposition was carried out under various sputtering conditions to investigate the effect of sputtering process on the characteristics of IZO:Al thin films. Correlation between sputtering factors and electronic properties of the film will be discussed in detail.

  • PDF

Sample Preparation of Ductile Heterogeneity Materials by Ultramicrotomy (연성 이종 재료 시료의 상온 절편 제작법)

  • Chae, Hee-Su;Kweon, Hee-Seok;Je, A-Reum;Lee, Seok-Hoon;Kim, Jin-Gyu
    • Applied Microscopy
    • /
    • v.42 no.1
    • /
    • pp.49-52
    • /
    • 2012
  • For TEM study of biological samples or polymers that are contained in organic structure, it is often required that the sample is prepared by using ultramicrotome and stained with proper agents to increase the contrast of organic structure. In this study, we investigated an efficient TEM sample preparation method for ductile heterogeneity material by using ultramicrotomy. Cryo-ultramicrotomy is a suitable method that is capable of rendering sample hardness for various ductile materials. However, it has several factors to consider, such as experimental cost, working time and finding the optimal staining conditions. To satisfy these considerations, we prepared TEM sample by using ultramicrotome without cryofunction, and secured the sample hardness by applying the staining process prior to ultrathin sectioning. The cross-linked polyethylene structure in the sample was stained with the 2% $RuO_4$ solution in a sealed test tube for 24 hours at $4^{\circ}C$. After the sample staining, ultrathin sections of sample were prepared using ultramicrotome. As a result, it was revealed that the difficulties associated with staining of ultrathin sections prepared by low-temperature conditions were improved. In addition, appropriate staining depth of sample could be selected for sectioning process. The quality of TEM sample obtained by using this method was better than that of cryo-ultramicroscopy. Finally, it is expected that our method could be effectively applied in TEM sample preparation for a variety of nano-bio convergence materials.

Comparison of Biomechanical Properties of Dura Mater Substitutes and Cranial Human Dura Mater : An In Vitro Study

  • Kizmazoglu, Ceren;Aydin, Hasan Emre;Kaya, Ismail;Atar, Murat;Husemoglu, Bugra;Kalemci, Orhan;Sozer, Gulden;Havitcioglu, Hasan
    • Journal of Korean Neurosurgical Society
    • /
    • v.62 no.6
    • /
    • pp.635-642
    • /
    • 2019
  • Objective : The aim of this study was to investigate the biomechanical differences between human dura mater and dura mater substitutes to optimize biomimetic materials. Methods : Four groups were investigated. Group I used cranial dura mater (n=10), group II used $Gore-Tex^{(R)}$ Expanded Cardiovascular Patch (W.L. Gore & Associates Inc., Flagstaff, AZ, USA) (n=6), group III used $Durepair^{(R)}$ (Medtronic Inc., Goleta, CA, USA) (n=6), and group IV used $Tutopatch^{(R)}$ (Tutogen Medical GmbH, Neunkirchen am Brand, Germany) (n=6). We used an axial compression machine to measure maximum tensile strength. Results : The mean tensile strengths were $7.01{\pm}0.77MPa$ for group I, $22.03{\pm}0.60MPa$ for group II, $19.59{\pm}0.65MPa$ for group III, and $3.51{\pm}0.63MPa$ for group IV. The materials in groups II and III were stronger than those in group I. However, the materials in group IV were weaker than those in group I. Conclusion : An important dura mater graft property is biomechanical similarity to cranial human dura mater. This biomechanical study contributed to the future development of artificial dura mater substitutes with biomechanical properties similar to those of human dura mater.

Characterization and thermophysical properties of Zr0.8Nd0.2O1.9-MgO composite

  • Nandi, Chiranjit;Kaity, Santu;Jain, Dheeraj;Grover, V.;Prakash, Amrit;Behere, P.G.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.603-610
    • /
    • 2021
  • The major drawback of zirconia-based materials, in view of their applications as targets for minor actinide transmutation, is their poor thermal conductivity. The addition of MgO, which has high thermal conductivity, to zirconia-based materials is expected to improve their thermal conductivity. On these grounds, the present study aims at phase characterization and thermophysical property evaluation of neodymium-substituted zirconia (Zr0.8Nd0.2O1.9; using Nd2O3 as a surrogate for Am2O3) and its composites with MgO. The composite was prepared by a solid-state reaction of Zr0.8Nd0.2O1.9 (synthesized by gel combustion) and commercial MgO powders at 1773 K. Phase characterization was carried out by X-ray diffraction and the microstructural investigation was performed using a scanning electron microscope equipped with energy dispersive spectroscopy. The linear thermal expansion coefficient of Zr0.8Nd0.2O1.9 increases upon composite formation with MgO, which is attributed to a higher thermal expansivity of MgO. Similarly, specific heat also increases with the addition of MgO to Zr0.8Nd0.2O1.9. Thermal conductivity was calculated from measured thermal diffusivity, temperature-dependent density and specific heat values. Thermal conductivity of Zr0.8Nd0.2O1.9-MgO (50 wt%) composite is more than that of typical UO2 fuel, supporting the potential of Zr0.8Nd0.2O1.9-MgO composites as target materials for minor actinides transmutation.

A study about sculpture characteristic of SKD61 tool steel fabricated by selective laser melting(SLM) process (SLM 공정으로 제작된 SKD61 공구강의 조형 특성에 관한 연구)

  • Yun, Jaecheol;Choe, Jungho;Kim, Ki-Bong;Yang, Sangsun;Yang, Dong-Yeol;Kim, Yong-Jin;Lee, Chang-Woo;Yu, Ji-Hun
    • Journal of Powder Materials
    • /
    • v.25 no.2
    • /
    • pp.137-143
    • /
    • 2018
  • In this study, two types of SKD61 tool-steel samples are built by a selective laser melting (SLM) process using the different laser scan speeds. The characteristics of two kinds of SKD61 tool-steel powders used in the SLM process are evaluated. Commercial SKD61 tool-steel power has a flowability of 16.68 sec/50 g and its Hausner ratio is calculated to be 1.25 by apparent and tapped density. Also, the fabricated SKD61 tool steel powder fabricated by a gas atomization process has a flowability of 21.3 sec/50 g and its Hausner ratio is calculated to be 1.18. Therefore, we confirmed that the two powders used in this study have excellent flowability. Samples are fabricated to measure mechanical properties. The highest densities of the SKD61 tool-steel samples, fabricated under the same conditions, are $7.734g/cm^3$ (using commercial SKD61 powder) and $7.652g/cm^3$ (using fabricated SKD61 powder), measured with Archimedes method. Hardness is measured by Rockwell hardness testing equipment 5 times and the highest hardnesses of the samples are 54.56 HRC (commercial powder) and 52.62 HRC (fabricated powder). Also, the measured tensile strengths are approximately 1,721 MPa (commercial SKD61 powder) and 1,552 MPa (fabricated SKD61 powder), respectively.

Stress Patterns in the Reconstructed Double Bundles of the Anterior Cruciate Ligament in Response to an Anterior Tibial Load and Rotatory Load: an Analysis using a 3-Dimensional Finite Element Model (삼차원 유한 요소 모델을 이용한 전방십자인대 이중다발 재건술 후 전방 전위 및 회전 부하에 따른 이식건 응력 양상 분석)

  • Seo, Young-Jin;Song, Si Young;Ahn, Jung Tae;Kim, Yoon-Sang;Ko, Jun Ho;Jang, Seong-Wook;Yoo, Yon-Sik
    • Journal of the Korean Arthroscopy Society
    • /
    • v.16 no.2
    • /
    • pp.160-166
    • /
    • 2012
  • Purpose: The aim of this study was to determine the patterns of the stress distribution within the reconstructed anterior cruciate ligament (ACL) double bundles in response to an anterior tibial load and rotatory load at $45^{\circ}$ flexed knee model by use of a 3-dimensional finite element analysis (FEM). Materials and Methods: The $0^{\circ}$ and $45^{\circ}$ flexed 3-D knee model were reconstructed based on the high resolution computed tomography (CT) images from the right knee of a healthy male subject. To simulate double bundle ACL reconstruction, in $0^{\circ}$ analytic model, four 7 mm diameter tunnels were created at the center of each anteromedial (AM) and posterolateral (PL) footprints on the femur and tibia. The grafts were inserted into the corresponding bone tunnels and then reconstructed knee model was flexed to $45^{\circ}$. As a next step, the 5 mm anterior tibial load and internal rotational load of $10^{\circ}$ were applied on the final Computer aided design (CAD) model. And then stress patterns of each bundle were assessed using a finite element analysis. Results: In response to the 5 mm of anterior tibial load, the AM bundle showed increased stresses around the tibial and femoral attachment sites; especially in the anterior aspect of the bundle. In the PL bundle, the highest stress concentration was also noticed on the anterior aspect of the bundle. Under $10^{\circ}$ internal rotational load, the stress concentration was predominant around the anterior aspect of the tibial attachment site within the AM bundle. The PL bundle also showed highest stress concentration on the anterior aspect of the bundle. Conclusion: Although the stress patterns were not identical among the AM and PL bundle, there were common trends in the stress distribution. The stress concentration was predominant on the anterior aspect of both bundles in response to the anterior tibial load and rotatory load.

  • PDF

Relationship between Graft Appearance on Follow-up MRI and Knee Stability after Double Bundle ACL Reconstruction (이중 다발 전방십자 재건술 후 이식건의 자기공명영상 추시와 슬관절 안정성과의 관계)

  • Sim, Jae Ang;Kwak, Ji Hoon;Lee, Yong Seuk;Kim, Kwang Hui;Nam, Shin Woo;Jun, Sung Soo;Lee, Beom Koo
    • Journal of the Korean Arthroscopy Society
    • /
    • v.16 no.2
    • /
    • pp.128-133
    • /
    • 2012
  • Purpose: This study examined the relationship between graft appearance on follow-up magnetic resonance imaging (MRI) and knee stability after double bundle anterior cruciate ligament (ACL) reconstruction. Materials and Methods: For each patient, 1.5 tesla MRI's were obtained. The signal intensity of grafts was divided into 3 grades by Sononda's classification. The course of grafts was divided into two patterns: straight and curved. We assessed Lachman test, KT 2000 arthrometer and anterior drawer stress radiograph using Telos$^{(R)}$ in $30^{\circ}$ knee flexion for anterior stability and evaluated pivot shift test for rotatory stability. The correlation between graft appearance on MRI and the results of knee stability tests was evaluated. Results: The anteromedial (AM) graft was evaluated as being grade 1 in 66.7%, grade 2 in 26.7%, and grade 3 in 6.7% of the cases and the posterolateal (PL) graft was assessed as being grade 1 in 63.3%, grade 2 in 33.3%, and grade 3 in 3.3% of the cases according to the signal intensity. The AM graft was evaluated as being straight in 83.3% and curved in 16.7% of the cases, and the PL graft was assessed as being straight in 86.7% and curved in 13.3% of the cases according to the course. The course of AM graft was correlated with the results of anterior stability tests and the course of PL graft was correlated with the result of rotatory stability test. However, the signal intensity of grafts was not correlated with the results of anterior stability and rotatory stability tests. Conclusion: The course of AM is correlated with anterior stability and the course of PL is correlated with rotatory stability on follow-up MRI after double bundle ACL reconstruction.

  • PDF