• Title/Summary/Keyword: AM materials

Search Result 474, Processing Time 0.021 seconds

A Study on the Geomorphic Landscape of Yeongdong Area Described in the Haedong Myeongsan Docheop (해동명산도첩에 나타난 영동지역 지형 경관에 대한 연구)

  • Shin, Won Jeong;Kim, Jong Yeon
    • Journal of The Geomorphological Association of Korea
    • /
    • v.27 no.4
    • /
    • pp.53-70
    • /
    • 2020
  • Silgyeong sansuhwa (Realistic landscape paintings) are drawn in Korea since 17th century. It has characteristics of more realistic description of landscape than painting from previous periods. Kim Hong Do's 'Haedong Myeongsan docheop (The album of paintings of famous mountains in Korea)' has been recognized as fine example of realistic description of geomorphic landscapes. Kim Hong Do and Kim Eung hwan did official travel to Gwandong and Geumgangsan area by order of King Jeongjo in 1788. As a result of that travel they draw about 100 piece of landscape painting. About 60 pieces of the paintings are still remaining. These are open to public by Korea National Museum in 1996. 14 pieces of painting, Daegwanryeong and Gangneung, Gyeongpo-dae, Hohae-jeong, Gahak-jeong, Cheonggan-jeong, Mun-am, Mangyang-jeong, Wolsong-jeong, Neungpa-dae, Naksan-sa, Mureung-gye, Gyejo-gul, and Hyeonjong-am, are analysed in this study. Coastal depositional landforms, like lagoon, sand beach and spit or barriers, erosional forms, like sea stack, sea cliff and sea cave, depicted in the paintings are analysed. In addition, structural landforms, colluvial landform and bedrock incision form by the running water in mountain area were analysed and weathered forms of granite and excursion to karst cave also discussed. It is found that sea arch in the printing destroyed since 1788, though exact position and reason is still unknown. There are strong need for discovery and identification of geomorphic landscape resources, for applied geomorphological studies and for prepare educational materials for non-face-to-face education. It also be emphasized that it can be used of the course work materials for future education using augmented reality and virtual reality technology.

Characterization and Electrical Conductivity of Carbon-Coated Metallic (Ni, Cu, Sn) Nanocapsules

  • Wang, Dong Xing;Shah, Asif;Zhou, Lei;Zhang, Xue Feng;Liu, Chun Jing;Huang, Hao;Dong, Xing Long
    • Applied Microscopy
    • /
    • v.45 no.4
    • /
    • pp.236-241
    • /
    • 2015
  • Carbon-coated Ni, Cu and Sn nanocapsules were investigated by means of X-ray diffraction (XRD), transmission electron microscopy (TEM) and a four-point probe device. All of these nanocapsules were prepared by an arc-discharge method, in which the bulk metals were evaporated under methane ($CH_4$) atmosphere. Three pure metals (Ni, Cu, Sn) were typically diverse in formation of the carbon encapsulated nanoparticles and their different mechanisms were investigated. It was indicated that a thick carbon layers formed on the surface of Ni(C) nanocapsules, whereas a thin shell of carbon with 1~2 layers covered on Cu(C) nanocapsules, and the Sn(C) nanocapsules was, in fact, a longger multi-walled carbon nanotubes partially-filled with metal Sn. As one typical magnetic/dielectric nanocomposite particles, Ni(C) nanocapsules and its counterpart of oxide-coated Ni(O) nanocapsules were compared in the electrically conductive behaviors for further applications as the electromagnetic materials.

A Study on the Properties of Photocatalytic Cement for Waste Gas Reduction (배기가스 제거용 광촉매시멘트의 특성에 관한 연구)

  • Lee, Won-Am;Yang, Jin;Ryu, Jae-Sang;Lee, Jong-Ryul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.425-430
    • /
    • 2002
  • The needs of the times, a cement plays an important roll in the materials field. So, in this research we would like to study on the properties of Photocatalytic Cement for waste gas reduction. The fundamental phenomena of the Photocatalytic Cement were observed by the NOx Analyzer, Bonding strength, SEM, Flow and Surface hardness(Pencil tester). As a result of this study, the Photocatalytic Cement used Photocatalytic powder, admixture and other materials can obtain its physical properties, also photocatalytic efficiency. If we have added a various experiment, we could have to develop the Photocatalytic Cement.

  • PDF

Study of the Energy Level Alignment of Organic Materials' Planar Junction Prepared by Electrospray Vacuum Deposition

  • Kim, Ji-Hun;Hong, Jong-Am;Seo, Jae-Won;Gwon, Dae-Gyeon;Maeng, Min-Jae;Park, Yong-Seop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.235-235
    • /
    • 2012
  • We investigated the energy levels of valence region at the planar junction of poly (3-hexylthiophene) (P3HT) and C61-butyric acid methylester (PCBM) using ultraviolet photoemission spectroscopy (UPS) with ultra high vacuum. These are the most widely used materials for bulk heterojunction (BHJ) organic solar cells due to their high efficiency. In order to make the planar junction, we carried out the electrospray vacuum deposition (EVD) of PCBM onto spin-coated P3HT in high vacuum conditions (${\sim}10^{-5}-10^{-6}$). The planar junction interface exhibited 0.71 eV for the offset between P3HT HOMO and PCBM LUMO, which is different from the gap (0.85 eV) of individual values and is closer to the open circuit voltage of solar cells fabricated with the same material combination.

  • PDF

New Donor Materials Based on Thiazole and Triphenylamine for Photovoltaic Devices

  • Ro, Tak-Kyun;Hong, Jong-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.9
    • /
    • pp.2897-2902
    • /
    • 2012
  • New photovoltaic donor materials, 4,4'-(2,2'-bithiazole-5,5'-diyl)bis(N,N-diphenylbenzenamine) (BDT) and 4-(2,2'-bithiazol-5-yl)-N,N-diphenylbenzenamine (BT), were synthesized. A solution processable triphenylamine-containing bithiazole (BDT and BT) was blended with a [6,6]-phenyl $C_{61}$ butyric acid methyl ester (PCBM) acceptor to study the performance of small-molecule-based bulk heterojunction (BHJ) photovoltaic devices. Optimum device performance was achieved after annealing, for device with a BDT/PCBM ratio of 1:4. The open-circuit voltage, short-circuit current, and power conversion efficiency of the device with the aforementioned BDT/PCBM ratio were 0.51 V, 4.10 $mA\;cm^{-2}$, and 0.68%, respectively, under simulated AM 1.5 solar irradiation (100 $mW\;cm^{-2}$).

Dark-field Transmission Electron Microscopy Imaging Technique to Visualize the Local Structure of Two-dimensional Material; Graphene

  • Na, Min Young;Lee, Seung-Mo;Kim, Do Hyang;Chang, Hye Jung
    • Applied Microscopy
    • /
    • v.45 no.1
    • /
    • pp.23-31
    • /
    • 2015
  • Dark field (DF) transmission electron microscopy image has become a popular characterization method for two-dimensional material, graphene, since it can visualize grain structure and multilayer islands, and further provide structural information such as crystal orientation relations, defects, etc. unlike other imaging tools. Here we present microstructure of graphene, particularly, using DF imaging. High-angle grain boundary formation wass observed in heat-treated chemical vapor deposition-grown graphene on the Si substrate using patch-quilted DF imaging processing, which is supposed to occur by strain around multilayer islands. Upon the crystal orientation between layers the multilayer islands were categorized into the oriented one and the twisted one, and their local structure were compared. In addition information from each diffraction spot in selected area diffraction pattern was summarized.

Crystallography Analysis of the β-Mg17Al12 Precipitates by the Secondary Constrained Coincident Site Lattice Model

  • Huang, Xuefei;Huang, Weigang
    • Applied Microscopy
    • /
    • v.45 no.4
    • /
    • pp.230-235
    • /
    • 2015
  • Crystallographic models are effective tools to interpret, calculate and even to predict the preferred crystallographic morphologies of precipitates in various precipitation systems. The present study gives an introduction on the recently developed secondary constrained coincident site lattice (II-CCSL) model. Using the II-CCSL model, the interface matching condition of the ${\beta}-Mg_{17}Al_{12}$ precipitates with ${\alpha}-Mg$ matrix in an aged AZ91 alloy has been analyzed to rationalize the morphologies of the precipitates. The results show that the characteristic crystallographic features of the observed ${\beta}-Mg_{17}Al_{12}$ precipitates, i.e., the habit plane of the ${\beta}-Mg_{17}Al_{12}$ lath with a Burgers orientation relationship (OR) and the growth direction of the ${\beta}-Mg_{17}Al_{12}$ with a Crawley OR exhibit a better lattice matching degree than their vicinal orientations. Moreover, the Crawley OR is preferred to the Burgers OR due to a better lattice match.

Effects of Grain Refinement and Melt Stirring on the Mechanical Properties and Fluidity of Mg-Al Alloys (Mg-Al계 합금의 기계적 성질 및 유동도에 미치는 결정립 미세화 처리 및 용탕 교반의 영향)

  • Kim, Jeong-Min;Park, Joon-Sik
    • Journal of Korea Foundry Society
    • /
    • v.30 no.3
    • /
    • pp.111-114
    • /
    • 2010
  • The effects of grain refinement and melt stirring on the mechanical properties and fluidity of AZ91D and AM50 alloys were investigated. The average grain sizes of those alloys were reduced by the micro-addition of strontium. The tensile properties and fluidity were increased by this treatment. Those were reduced remarkably by the melt stirring.

Understanding of the Shear Bands in Amorphous Metals

  • Park, Eun Soo
    • Applied Microscopy
    • /
    • v.45 no.2
    • /
    • pp.63-73
    • /
    • 2015
  • Shear banding is an evidence of plastic instability that localizes large shear strains in a relatively thin band when a material is plastically deformed. Shear bands have attracted much attention in amorphous metals, because shear bands are the key feature that controls the plastic deformation process. In this article, we review recent advances in understanding of the shear bands in amorphous metals regarding: dislocations versus shear bands, the formation of shear bands, hot versus cold shear bands, and property manipulation by shear band engineering. Although there are many key issues that remain puzzling, the understanding built-up from these approaches will provide a new insight for tailoring shear bands in amorphous metals, which potentially leads to unique property changes as well as improved mechanical properties. Indeed, this effort might open a new era to the future use of amorphous metals as a new menu of engineering materials.

Researches on the Enhancement of Plasticity of Bulk Metallic Glass Alloys

  • Kim, Byoung Jin;Kim, Won Tae
    • Applied Microscopy
    • /
    • v.45 no.2
    • /
    • pp.52-57
    • /
    • 2015
  • Bulk metallic glass (BMG) shows higth strength, high elastic limit, corrosion resistance and good wear resistance and soft magnetic properties and has been considering as a candidate for new structural materials. But they show limited macroscopic plasticity and lack of tensile ductility due to highly localized shear deformation, which should be solved for real structural application. In this paper researches on the enhancement of plasticity of BMG were reviewed briefly. Introducing heterogeneous structure in glass is effective to induce more shear transformation zones (STZs) active for multiple shear band initiation and also to block the propagating shear band. Several methods such as BMG alloy design for high Poisson's ratio, addition of alloying element having positive heat of mixing, pre-straining BMG and variety of BMG composites have been developed for homogenous distribution of locally weak region, where local strain can be initiated. Therefore enhancement of plasticity of BMG is normally accompanied with some penalty of strength loss.