• 제목/요약/키워드: AM materials

검색결과 474건 처리시간 0.022초

적층식 제조(Additive manufacturing) 기술동향 (Technology Trend of the additive Manufacturing (AM))

  • 오지원;나현웅;최한신
    • 한국분말재료학회지
    • /
    • 제24권6호
    • /
    • pp.494-507
    • /
    • 2017
  • A three-dimensional physical part can be fabricated from a three-dimensional digital model in a layer-wise manner via additive manufacturing (AM) technology, which is different from the conventional subtractive manufacturing technology. Numerous studies have been conducted to take advantage of the AM opportunities to penetrate bespoke custom product markets, functional engineering part markets, volatile low-volume markets, and spare part markets. Nevertheless, materials issues, machines issues, product issues, and qualification/certification issues still prevent the AM technology from being extensively adopted in industries. The present study briefly reviews the standard classification, technological structures, industrial applications, technological advances, and qualification/certification activities of the AM technology. The economics, productivity, quality, and reliability of the AM technology should be further improved to pass through the technology adoption lifecycle of innovation technology. The AM technology is continuously evolving through the introduction of PM materials, hybridization of AM and conventional manufacturing technologies, adoption of process diagnostics and control systems, and enhanced standardization of the whole lifecycle qualification and certification methodology.

DGEBA/MDA계의 인장 및 충격 특성에 미치는 PGE-AcAm의 영향 (Effects of PGE-AcAm on the Tensile and Impact Properties of DGEBA/MDA System)

  • 이재영;심미자;김상욱
    • 한국재료학회지
    • /
    • 제7권6호
    • /
    • pp.460-463
    • /
    • 1997
  • 에폭시 수지 계의 경화반응 속도를 증가시키고 기계적 물성을 향상시키기 위해 합성 pheny1 glycidy1 ether(PGE)-acetamide(AcAm)를 diglycidy1 ether of bispenol A(DGEBA)/4,4'-methylene dianiline(MDA)계에 도입하였다. PGE와 AcAm을 2:1의 몰비로 혼합한 후 18$0^{\circ}C$에서 1시간 반응시켜서 PGE-AcAm을 합성하였다. 5phr의 PGE-AcAm이 첨가되었을 때 인장강도가 15% 개선되었으며, 그 이후로는 PGE-AcAm을 합성하였다. 5phr의 PGE-AcAm이 첨가되었을 때 인장강도가 15% 개선되었으며, 그 이후로는 PGE-AcAm의 함량에 관계없이 거의 비슷한 값을 나타내었다. 반면에유리전이 온도(Tg)와 충격강도는 PGE-AcAm의 함량이 증가함에 따라 감소하였다. 파단면은 PGE-AcAm이 첨가됨으로써 더 복잡한 형상을 나타내었다.

  • PDF

DGEBA/MDA/PGE-AcAm계의 자촉매 반응 속도론 (Autocatalytic Cure Kinetics of DGEBA/MDA/PGE-AcAm System)

  • 이재영;심미자;김상욱
    • 한국재료학회지
    • /
    • 제8권9호
    • /
    • pp.797-801
    • /
    • 1998
  • Diglycidy1 ether of bisphenol A (DEGBA)/4, 4'-methylene dianiline(MDA) 계의 반응속도에 미치는 10 phr의 pheny1 glycidy1 ether(PGE)-acetamide(AcAm)의 영향을 살펴보았다. PGE-AcAm이 첨가됨으로 인해서 승온적 DSC 곡선에서 최대 발열피크의 온도와 피크 시작 온도가 감소하였다. PGE-AcAm의 첨가 여부에 관계없이 전화율 곡선은 s-자 형상이었고, 이는 DGEBA/MDA 계와 DGEBA/MDA/PGE-AcAm 계가 자촉대 반응을 한다는 것을 의미한다. 또한 PGE-AcAm이 10 phr 첨가됨으로 인해서 1.2-1.4배 증가하였는데, 이는 PGE-AcAm의 수산기가 촉매로 작용하기 때문이다.

  • PDF

The Novel Liquid Crystal Materials for AM-LCDs

  • Yamaguchi, T.;Kibe, S.;Matsui, S.;Yamamoto, H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2002년도 International Meeting on Information Display
    • /
    • pp.924-929
    • /
    • 2002
  • We have developed the novel liquid crystal materials with a difluoromethyleneoxy (CF2O) moiety as a linkage group in order to satisfy the diversified various requirements for AM-LCDs. These novel CF2O LC materials have excellent physical properties that are high dielectric anisotropy, low viscosity and wide nematic temperature ranges. Physical properties measurement results that mixtures containing CF2O LC materials have suitable for characteristics for AM-LCDs. The CF2O LC materials are excellent compound for quick response and low driving voltage application.

  • PDF

AM50-0.3 wt%CaO 합금의 미세조직과 상·고온 기계적 특성 (Microstructure and Mechanical Properties at Room and Elevated Temperatures in AM50-0.3 wt%CaO Alloy)

  • 조은호;전중환;김영직
    • 한국재료학회지
    • /
    • 제22권10호
    • /
    • pp.499-503
    • /
    • 2012
  • The present study is intended to comparatively investigate the changes in microstructure and tensile properties at room and elevated temperatures in commercial AM50(Mg-5%Al-0.3%Mn) and 0.3 wt%CaO added ECO-AM50 alloys produced by permanent mould casting. The typical microstructure of AM50 alloy was distinctively characterized using two intermetallic compounds, ${\beta}(Mg_{17}Al_{12})$ and $Al_8Mn_5$, along with ${\alpha}$-(Mg) matrix in an as-cast state. The addition of a small amount of CaO played a role in reducing dendrite cell size and quantity of the ${\beta}$ phase in the AM50 alloy. It is interesting to note that the added CaO introduced a small amount of $Al_2Ca$ adjacent to the ${\beta}$ compounds, and that inhomogeneous enrichment of elemental Ca was observed within the ${\beta}$ phase. The ECO-AM50 alloy showed higher hardness and better YS and UTS at room temperature than did the AM50 alloy, which characteristics can be mainly ascribed to the finer-grained microstructure that originated from the CaO addition. At $175^{\circ}C$, higher levels of YS and UTS and higher elongation were obtained for the ECO-AM50 alloy, demonstrating that even 0.3 wt%CaO addition can be beneficial in promoting the heat resistance of the AM50 alloy. The combinational contributions of enhanced thermal stability of the Ca-containing ${\beta}$ phase and the introduction of a stable $Al_2Ca$ phase with high melting point are thought to be responsible for the improvement of the high temperature tensile properties in the ECO-AM50 alloy.

Multi-step Metals Additive Manufacturing Technologies

  • Oh, Ji-Won;Park, Jinsu;Choi, Hanshin
    • 한국분말재료학회지
    • /
    • 제27권3호
    • /
    • pp.256-267
    • /
    • 2020
  • Metal additive manufacturing (AM) technologies are classified into two groups according to the consolidation mechanisms and densification degrees of the as-built parts. Densified parts are obtained via a single-step process such as powder bed fusion, directed energy deposition, and sheet lamination AM technologies. Conversely, green bodies are consolidated with the aid of binder phases in multi-step processes such as binder jetting and material extrusion AM. Green-body part shapes are sustained by binder phases, which are removed for the debinding process. Chemical and/or thermal debinding processes are usually devised to enhance debinding kinetics. The pathways to final densification of the green parts are sintering and/or molten metal infiltration. With respect to innovation types, the multi-step metal AM process allows conventional powder metallurgy manufacturing to be innovated continuously. Eliminating cost/time-consuming molds, enlarged 3D design freedom, and wide material selectivity create opportunities for the industrial adoption of multi-step AM technologies. In addition, knowledge of powders and powder metallurgy fuel advances of multi-step AM technologies. In the present study, multi-step AM technologies are briefly introduced from the viewpoint of the entire manufacturing lifecycle.

Amphotericin B Aggregation Inhibition with Novel Nanoparticles Prepared with Poly(${\varepsilon}$-caprolactone)/Poly(N,N-dimethylamino-2-ethyl methacrylate) Diblock Copolymer

  • Shim, Yong-Ho;Kim, You-Chan;Lee, Hong-Joo;Bougard, Francois;Dubois, Philippe;Choi, Ki-Choon;Chung, Chung-Wook;Kang, Dae-Hwan;Jeong, Young-Il
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권1호
    • /
    • pp.28-36
    • /
    • 2011
  • Diblock copolymers composed of poly(${\varepsilon}$-caprolactone) (PCL) and poly(N,N-dimethylamino-2-ethyl methacrylate) (PDMAEMA), or methoxy polyethylene glycol(PEG), were synthesized via a combination of ring-opening polymerization and atom-transfer radical polymerization in order to prepare polymeric nanoparticles as an antifungal drug carrier. Amphotericin B (AmB), a natural antibiotic, was incorporated into the polymeric nanoparticles. The physical properties of AmB-incorporated polymeric nanoparticles with PCL-b-PDMAEMA and PCL-b-PEG were studied in relation to morphology and particle size. In the aggregation state study, AmB-incorporated PCL-b- PDMAEMA nanoparticles exhibited a monomeric state pattern of free AmB, whereas AmB-incorporated PCL-b- PEG nanoparticles displayed an aggregated pattern. In in vitro hemolysis tests with human red blood cells, AmBincorporated PCL-b-PDMAEMA nanoparticles were seen to be 10 times less cytotoxic than free AmB (5 ${\mu}g$/ml). In addition, an improved antifungal activity of AmBincorporated polymeric nanoparticles was observed through antifungal activity tests using Candida albicans, whereas polymeric nanoparticles themselves were seen not to affect activity. Finally, in vitro AmB release studies were conducted, proving the potential of AmB-incorporated PCL-b-PDMAEMA nanoparticles as a new formulation candidate for AmB.

Q&P와 AM강의 잔류오스테나이트 분율과 안정도에 따른 인장특성 거동 (Effects of Stability and Volume Fraction of Retained Austenite on the Tensile Properties for Q&P and AM Steels)

  • 변상호;오창석;남대근;김영석;강남현;조경목
    • 한국재료학회지
    • /
    • 제19권6호
    • /
    • pp.305-312
    • /
    • 2009
  • The effects of Quenching and Partitioning (Q&P) and Annealed Martensite (AM) heat treatment on the microstructure and tensile properties were investigated for 0.24C-0.5Si-1.5Mn-1Al steels. The Q&P steels were annealed at a single phase ($\gamma$) or a dual phase (${\gamma}+{\alpha}$), followed by quenching to a temperature between $M_s$ and $M_f$. Then, enriching carbon was conducted to stabilize the austenite through the partitioning, followed by water quenching. The AM steels were intercritically annealed at a dual phase (${\gamma}+{\alpha}$) temperature and austempered at $M_s$ and $M_s{\pm}50^{\circ}C$, followed by cooling in oil quenching. The dual phase Q&P steels showed lower tensile strength and yieldyield strength than those of the single phase Q&P steels, and tThe elongation for the dual phase Q&P steel was partitioning 100s higher than that of that for the single phase Q&P steels as the partitioning time was less than 100s up to partitioning 100s. For AM steels, the tensile/yield strength decreased and the total elongation increased as the austempering temperature increased. The stability of the retained austenite controlled the elongation for Q&P steels and the volume fraction of the retained austenite controlled the elongation for AM steels.

합성된 PGE-AcAm이 에폭시 수지 계의 반응속도의 미치는 영향 (Effect of Synthetic PGE-AcAm on the Reaction Rate of Epoxy System)

  • 이재영;심미자;김상욱
    • 한국재료학회지
    • /
    • 제6권6호
    • /
    • pp.644-650
    • /
    • 1996
  • Diglycidy1 ether of bisphenol A (DGEBA)/4,4'-methylene dianiline(MDA)계의 경화반응 속도에 미치는 pheny1 glycidy1 ether (PGE)-acetamide(AcAm)의 영향을 연구하였다. 반응성 첨가제로 사용된 PGE-AcAm는 PGE와 acetamide를 2:1의 몰 비로 혼합한 후 18$0^{\circ}C$에서 1시간 반응시켜서 합성하였으며, PGE의 에폭사이드기와 AcAm의 아민기가 반응함으로써 수산기를 형성함에 의해 진행되었다. 이 때 생성된 수산기는 DGEBA와 MDA의 반응에서 촉매로 작용하여 반응속도를 크게 활성화 에너지는 11.11 Kcal/mol이었고, 30 phr의 PGE-AcAm이 첨가된 계의 활성화 에너지는 7.91Kcal/mol이었다.

  • PDF