• 제목/요약/키워드: ALM-FNN

검색결과 18건 처리시간 0.025초

ALM-FNN 제어기에 의한 SynRM 드라이브의 최대토크 제어 (Maximum Torque Control of SynRM Drive with ALM-FNN Controller)

  • 고재섭;최정식;정동화
    • 조명전기설비학회논문지
    • /
    • 제20권10호
    • /
    • pp.47-57
    • /
    • 2006
  • 본 논문은 ALM-FNN 제어기와 ANN 제어기를 사용하여 SynRM 드라이브의 최대토크 제어를 제시한다. 이 제어기는 인버터의 정격 전류와 전압 제한을 고려하고 전 속도 영역에 적용된다. 각 제어모드를 위하여 최대토크를 위한 최적의 d-축 전류 $^i{_d}$를 결정한다. 제시된 제어 알고리즘은 ALM-FNN 제어기와 ANN 제어기로 SynRM 드라이브 시스템을 제어하는데 적용된다. 최대토크 제어에 의하여 제어된 동작 특성은 실험을 통하여 상세히 설명한다. 또한 본 눈문은 ALM-FNN 제어기와 ANN 제어기 결과분석을 통하여 타당성을 입증한다.

유도전동기 드라이브의 고성능 제어를 위한 PI, FNN 및 ALM-FNN 제어기의 비교연구 (Comparative Study of PI, FNN and ALM-FNN for High Control of Induction Motor Drive)

  • 강성준;고재섭;최정식;장미금;백정우;정동화
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2009년도 춘계학술대회 논문집
    • /
    • pp.408-411
    • /
    • 2009
  • In this paper, conventional PI, fuzzy neural network(FNN) and adaptive teaming mechanism(ALM)-FNN for rotor field oriented controlled(RFOC) induction motor are studied comparatively. The widely used control theory based design of PI family controllers fails to perform satisfactorily under parameter variation nonlinear or load disturbance. In high performance applications, it is useful to automatically extract the complex relation that represent the drive behaviour. The use of learning through example algorithms can be a powerful tool for automatic modelling variable speed drives. They can automatically extract a functional relationship representative of the drive behavior. These methods present some advantages over the classical ones since they do not rely on the precise knowledge of mathematical models and parameters. Comparative study of PI, FNN and ALM-FNN are carried out from various aspects which is dynamic performance, steady-state accuracy, parameter robustness and complementation etc. To have a clear view of the three techniques, a RFOC system based on a three level neutral point clamped inverter-fed induction motor drive is established in this paper. Each of the three control technique: PI, FNN and ALM-FNN, are used in the outer loops for rotor speed. The merit and drawbacks of each method are summarized in the conclusion part, which may a guideline for industry application.

  • PDF

ALM-FNN 및 MFC 제어기를 이용한 IPMSM 최대토크 제어 (Maximum Torque Control of IPMSM using ALM-FNN and MFC Controller)

  • 정병진;고재섭;최정식;정철호;김도연;정동화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 춘계학술대회 논문집 에너지변화시스템부문
    • /
    • pp.26-28
    • /
    • 2009
  • This paper proposes maximum torque control of IPMSM drive using adaptive teaming mechanism-fuzzy neural network (ALM-FNN) controller, model reference adaptive fuzzy tonal(MFC) and artificial neural network(ANN). This control method is applicable over the entire speed range which considered the limits of the inverter's current and voltage rated value. For each control mode, a condition that determines the optimal d-axis current $i_d$ for maximum torque operation is derived. This paper considers the design and implementation of novel technique of high performance speed control for IPMSM using ALM-FNN, MFC and ANN controller. The proposed control algorithm is applied to IPMSM drive system controlled ALM-FNN, MFC and ANN controller, the operating characteristics controlled by maximum torque control are examined in detail. Also, this paper proposes the analysis results to verify the effectiveness of the ALM-FNN, MFC and ANN controller.

  • PDF

ALM-FNN을 이용한 IPMSM 드라이브의 HIPI 제어기 (HIPI Controller of IPMSM Drive using ALM-FNN)

  • 고재섭;최정식;정동화
    • 조명전기설비학회논문지
    • /
    • 제23권8호
    • /
    • pp.57-66
    • /
    • 2009
  • 종래의 고정된 이득을 가진 PI 제어기는 지령속도, 부하변화 등과 같은 파라미터 변동에 대해서 매우 민감하다. IPMSM 드라이브의 정확한 속도제어는 비선형적인 전자기적 발생저항뿐만 아니라 회전자 속도와 권선저항사이의 비선형적 관계 때문에 복잡한 문제점이 있다. 따라서 광범위한 동작상태에서 최적 제어를 위해 PI 제어기의 이득값을 실시간으로 조절해야한다. 본 논문은 FNN과 ALM을 이용하여 IPMSM 드라이브의 HIPI 제어기를 제시한다. 제시된 제어기는 ANN을 이용하여 속도를 추정하고, 시스템 외란에 대해서 IPMSM 드라이브의 고성능 속도제어를 제시한다. PI 제어기의 이득값은 모든 동작상태에서 ALM-FNN에 의해 최적화 되어진다. 제시된 제어기는 다양한 동작상태에 대한 분석을 통해 타당성을 입증한다.

ALM-FNN 제어기에 의한 IPMSM 드라이브의 최대토크 제어 (Maximum Torque Control of IPMSM Drive with ALM-FNN Controller)

  • 정동화
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제55권3호
    • /
    • pp.110-114
    • /
    • 2006
  • Interior permanent magnet synchronous motor(IPMSM) has become a popular choice in electric vehicle applications, due to their excellent power to weight ratio. In this paper maximum torque control of IPMSM drive using artificial intelligent(AI) controller is proposed. The control method is applicable over the entire speed range and considered the limits of the inverter's current and voltage rated value. For each control mode, a condition that determines the optimal d-axis current $i_d$ for maximum torque operation is derived. This paper considers the design and implementation of novel technique of high performance speed control for IPMSM using AI controller. This paper is proposed speed control of IPMSM using adaptive learning mechanism fuzzy neural network(ALM-FNN) and estimation of speed using artificial neural network(ANN) controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The proposed control algorithm is applied to IPMSM drive system controlled ALM-FNN and ANN controller, the operating characteristics controlled by maximum torque control are examined in detail. Also, this paper is proposed the experimental results to verify the effectiveness of AI controller.

ALM-FNN 제어기에 의한 SynRM 드라이브의 최대토크 제어 (Maximum Torque Control of SynRM Drive with ALM-FNN Controller)

  • 고재섭;최정식;이정호;김종관;박기태;박병상;정동화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.155-157
    • /
    • 2006
  • The paper is proposed maximum torque control of SynRM drive using adaptive learning mechanism-fuzzy neural network(ALM-FNN) controller and artificial neural network(ANN). The control method is applicable over the entire speed range and considered the limits of the inverter's current and voltage rated value. For each control mode, a condition that determines the optimal d-axis current $i_d$ for maximum torque operation is derived. The proposed control algorithm is applied to SynRM drive system controlled ALM-FNN and ANN controller, the operating characteristics controlled by maximum torque control are examined in detail. Also, this paper is proposed the analysis results to verify the effectiveness of the ALM-FNN and ANN controller.

  • PDF

ALM-FNN 및 FLC 제어기에 의한 SynRM 드라이브의 고성능 속도와 전류제어 (High Performance Speed and Current Control of SynRM Drive with ALM-FNN and FLC Controller)

  • 최정식;고재섭;정동화
    • 전기학회논문지P
    • /
    • 제58권3호
    • /
    • pp.249-256
    • /
    • 2009
  • The widely used control theory based design of PI family controllers fails to perform satisfactorily under parameter variation, nonlinear or load disturbance. In high performance applications, it is useful to automatically extract the complex relation that represent the drive behaviour. The use of learning through example algorithms can be a powerful tool for automatic modelling variable speed drives. They can automatically extract a functional relationship representative of the drive behavior. These methods present some advantages over the classical ones since they do not rely on the precise knowledge of mathematical models and parameters. The paper proposes high performance speed and current control of synchronous reluctance motor(SynRM) drive using adaptive learning mechanism-fuzzy neural network (ALM-FNN) and fuzzy logic control (FLC) controller. The proposed controller is developed to ensure accurate speed and current control of SynRM drive under system disturbances and estimation of speed using artificial neural network(ANN) controller. Also, this paper proposes the analysis results to verify the effectiveness of the ALM-FNN, FLC and ANN controller.

ALM-FNN에 의한 IPMSM 드라이브의 최대토크 제어 (Maximum Torque Control of IPMSM Drive with ALM-FNN)

  • 이정호;최정식;고재섭;김종관;박병상;박기태;정동화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.731-732
    • /
    • 2006
  • The paper is proposed maximum torque control of IPMSM drive using adaptive learning mechanism-fuzzy neural network (ALM-FNN) and artificial neural network(ANN). For each control mode, a condition that determines the optimal d-axis current $i_d$ for maximum torque operation is derived. The proposed control algorithm is applied to IPMSM drive system controlled ALM-FNN and ANN, the operating characteristics controlled by maximum torque control are examined in detail. Also, this paper is proposed the analysis results to verify the effectiveness of the ALM-FNN and ANN.

  • PDF

ALM-FNN 및 FLC 제어기에 의한 SynRM 드라이브의 고성능 속도와 전류제어 (High Performance Speed and Current Control of SynRM Drive with ALM-FNN and FLC Controller)

  • 정병진;고재섭;최정식;정철호;김도연;정동화
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2009년도 춘계학술대회 논문집
    • /
    • pp.416-419
    • /
    • 2009
  • The widely used control theory based design of PI family controllers fails to perform satisfactorily under-parameter variation, nonlinear or load disturbance. In high performance applications, it is useful to automatically extract the complex relation that represent the drive behaviour. The use of loaming through example algorithms can be a powerful tool for automatic modelling variable speed drives. They can automatically extract a functional relationship representative of the drive behavior. These methods present some advantages over the classical ones since they do not rely on the precise knowledge of mathematical models and parameters. The paper proposes high performance speed and current control of synchronous reluctance motor(SynRM) drive using adaptive loaming mechanism-fuzzy neural network (ALM-FNN) and fuzzy logic control(FLC) controller. The proposed controller is developed to ensure accurate speed and current control of SynRM drive under system disturbances and estimation of speed using artificial neural network(ANN) controller. Also, this paper proposes the analysis results to verify the effectiveness of the ALM-FNN and ANN controller.

  • PDF

ALM-FNN 제어기에 의한 IPMSM의 최대토크 제어 (Maximum Torque Control of IPMSM with ALM-FNN Controller)

  • 남수명;고재섭;최정식;박병상;정동화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.198-201
    • /
    • 2005
  • The paper is proposed maximum torque control of IPMSM drive using adaptive learning mechanism-fuzzy neural network (ALM-FNN) controller and artificial neural network(ANN). The control method is applicable over the entire speed range and considered the limits of the inverter's current and voltage rated value. For each control mode, a condition that determines the optimal d-axis current $^i_d$ for maximum torque operation is derived. The proposed control algorithm is applied to IPMSM drive system controlled ALM-FNN and ANN controller, the operating characteristics controlled by maximum torque control are examined in detail. Also, this paper is proposed the analysis results to verily the effectiveness of the ALM-FNN and ANN controller.

  • PDF