• Title/Summary/Keyword: AKARI

Search Result 251, Processing Time 0.056 seconds

COSMIC STAR FORMATION HISTORY AND AGN EVOLUTION NEAR AND FAR: AKARI REVEALS BOTH

  • Goto, Tomotsugu;AKARI NEP team, AKARI NEP team;AKARI all sky survey team, AKARI all sky survey team
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.347-352
    • /
    • 2012
  • Understanding infrared (IR) luminosity is fundamental to understanding the cosmic star formation history and AGN evolution, since their most intense stages are often obscured by dust. Japanese infrared satellite, AKARI, provided unique data sets to probe this both at low and high redshifts. The AKARI performed an all sky survey in 6 IR bands (9, 18, 65, 90, 140, and $160{\mu}m$) with 3-10 times better sensitivity than IRAS, covering the crucial far-IR wavelengths across the peak of the dust emission. Combined with a better spatial resolution, AKARI can measure the total infrared luminosity ($L_{TIR}$) of individual galaxies much more precisely, and thus, the total infrared luminosity density of the local Universe. In the AKARI NEP deep field, we construct restframe $8{\mu}m$, $12{\mu}m$, and total infrared (TIR) luminosity functions (LFs) at 0.15 < z < 2.2 using 4,128 infrared sources. A continuous filter coverage in the mid-IR wavelength (2.4, 3.2, 4.1, 7, 9, 11, 15, 18, and $24{\mu}m$) by the AKARI satellite allows us to estimate restframe $8{\mu}m$ and $12{\mu}m$ luminosities without using a large extrapolation based on a SED fit, which was the largest uncertainty in previous work. By combining these two results, we reveal dust-hidden cosmic star formation history and AGN evolution from z = 0 to z = 2.2, all probed by the AKARI satellite.

RADIO EMISSION FROM AKARI GALAXIES

  • Pepiak, A.;Solarz, A.;Pollo, A.;Takeuchi, T.T.;Jurusik, W.;AKARI Team, AKARI Team
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.339-341
    • /
    • 2012
  • It is a long known fact that there exists a tight correlation between far-infrared and radio emission both for galaxies hosting active galactic nuclei and for star forming galaxies. We probe the radio - infrared correlation for a sample of extragalactic sources constructed by the cross-correlation of the AKARI/IRC All-Sky Survey Point Source Catalogue, the AKARI/FIS All-Sky Survey Bright Source Catalogue, and the NRAO VLA Sky Survey. Additionally, all objects of our sample were identified as galaxies in NED and SIMBAD databases, and a part of them is known to host active galactic nuclei (AGNs). After remeasuring all the fluxes, in order to avoid small aperture effects, we compare the ratio of radio to infrared emission from different types of extragalactic sources, and discuss the FIR/radio correlation as seen by AKARI and make a comparison to the previous results obtained thanks to IRAS.

THE AKARI PROJECT: LEGACY AND DATA PROCESSING STATUS

  • NakagawaI, Takao;Yamamura, Issei
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.5-9
    • /
    • 2017
  • This paper provides an overview of the AKARI mission, which was the first Japanese satellite dedicated to infrared astronomy. The AKARI satellite was launched in 2006, and performed both an all-sky survey and pointed observations during its 550 days in the He-cooled mission phases (Phases 1 and 2). After the He ran out, we continued near-infrared observations with mechanical cryocoolers (Phase 3). Due to a failure of its power supply, AKARI was turned off in 2011. The AKARI data are unique in terms of the observed wavelengths as well as the sky coverage, and provide a unique legacy resource for many astronomical studies. Since April 2013, a dedicated new team has been working to refine the AKARI data processing. The goal of this activity is to provide processed datasets for most of the AKARI observations in a Science Ready form, so that more users can utilize the AKARI data in their astronomical research. The data to be released will include revised All-Sky Point Source Catalogues, All-Sky Image Maps, as well as high-sensitivity images and spectra obtained by pointed observations. We expect that the data will be made public by in the Spring of 2016.