• Title/Summary/Keyword: AIoT System

Search Result 17, Processing Time 0.022 seconds

The Design and Implementation of Smart Clinic Reservation System Using AIoT (AIoT를 이용한 스마트 진료실 예약 시스템의 설계 및 구현)

  • Jun-Hyeog Choi;Key-Won Kim;Myung-Sook Park
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.199-201
    • /
    • 2024
  • 최근 병원에서는 빅데이터, 지능형 사물인터넷(AIoT) 등 인공지능 기반 기술들을 활용하여 환자 진료 및 치료 영역은 물론 의료산업 및 의료 시설 등과 관련된 다양한 영역에서의 활용방안을 모색하고 있다. 지능형 사물인터넷(AIoT, Internet of Things)은 AI와 IoT의 기술적인 결합으로 산업의 혁신을 가져와 국가 전체의 생산성을 높일 수 있을 뿐만 아니라 삶의 질의 변화는 물론 병원의 의료 환경에 있어서도 많은 파급 효과를 가져다 줄 것으로 예상하고 있다. 본 논문에서는 병원의 효율적인 공간관리를 위한 AIoT 기반의 가변 스마트 진료실 예약 시스템에 대한 설계 및 구현을 통하여 병원의 주요 자산인 공간이라는 개념을 효율적으로 이용하고 병원 내 소통과 협업을 위한 유연한 진료 환경을 제공함으로서 병원의 규모와 진료 전문성에 맞추어진 가변적 공간 기능을 통해 병원의 경쟁력을 높이는 것을 그 목적으로 하고 있다.

  • PDF

Parking Lot Occupancy Detection using Deep Learning and Fisheye Camera for AIoT System

  • To Xuan Dung;Seongwon Cho
    • Smart Media Journal
    • /
    • v.13 no.1
    • /
    • pp.24-35
    • /
    • 2024
  • The combination of Artificial Intelligence and the Internet of Things (AIoT) has gained significant popularity. Deep neural networks (DNNs) have demonstrated remarkable success in various applications. However, deploying complex AI models on embedded boards can pose challenges due to computational limitations and model complexity. This paper presents an AIoT-based system for smart parking lots using edge devices. Our approach involves developing a detection model and a decision tree for occupancy status classification. Specifically, we utilize YOLOv5 for car license plate (LP) detection by verifying the position of the license plate within the parking space.

A Study on the Promotion of Safety Management at Construction Sites Using AIoT and Mobile Technology (AIoT와 Mobile기술을 활용한 건설현장 안전관리 활성화 방안에 관한 연구)

  • Ahn, Hyeongdo
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.1
    • /
    • pp.154-162
    • /
    • 2022
  • Purpose: The government intends to come up with measures to revitalize safety management at construction sites to shift safety management at construction sites from human capabilities to system-oriented management systems using advanced technologies AIoT and Mobile technologies. Method: The construction site safety management monitoring system using AIoT and Mobile technology conducted an experiment on the effectiveness of the construction site by applying three algorithms: virtual fence, fire monitoring, and recognition of not wearing a safety helmet. Result: The number of workers in the experiment was 215 and 7.61 virtual fence intrusion was 3.5% compared to the number of subjects and 0.16 fire detection were 0.07% compared to the subjects, and the average monthly rate of not wearing a safety helmet was 8.79, 4.05% compared to the subjects. Conclusion: It was found that the construction site safety management monitoring system using AIoT and Mobile technology has a valid effect on the construction site.

AIoT-based High-risk Industrial Safety Management System of Artificial Intelligence (AIoT 기반 고위험 산업안전관리시스템 인공지능 연구)

  • Yeo, Seong-koo;Park, Dea-woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.168-170
    • /
    • 2022
  • The government enacted and promulgated the 'Severe Accident Punishment Act' in January 2021, and is enforcing the law for workplaces with 50 or more full-time workers. However, the number of industrial accident accidents in 2021 increased by 10.7% compared to the same period of the previous year, and chemical gas Safety accidents due to leaks and explosions also occur frequently. Therefore, in high-risk industrial sites, comprehensive Safety measures are urgently needed. In this study, BLE Mesh networking in industrial sites with poor communication environment apply technology. The complex sensor AIoT device recognizes a dangerous situation as a gas sensing value, voice, and motion value, and transmits it to the server. The server monitors the risk situation in real time through information value analysis and judgment through artificial intelligence LSTM algorithm and CNN algorithm for AIoT transmission information. Through this study, through the development of AIoT devices capable of gas sensing, voice and motion recognition, and AI-applied safety management systems, It will contribute to the expansion of the social safety net by expanding its application.

  • PDF

AIoT-based High-risk Industrial Safety Management System of Artificial Intelligence (AIoT 기반 고위험 산업안전관리시스템 인공지능 연구)

  • Yeo, Seong-koo;Park, Dea-Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.9
    • /
    • pp.1272-1278
    • /
    • 2022
  • The government enacted and promulgated the 'Severe Accident Punishment Act' in January 2021 and is implementing this law. However, the number of occupational accidents in 2021 increased by 10.7% compared to the same period of the previous year. Therefore, safety measures are urgently needed in the industrial field. In this study, BLE Mesh networking technology is applied for safety management of high-risk industrial sites with poor communication environment. The complex sensor AIoT device collects gas sensing values, voice and motion values in real time, analyzes the information values through artificial intelligence LSTM algorithm and CNN algorithm, and recognizes dangerous situations and transmits them to the server. The server monitors the transmitted risk information in real time so that immediate relief measures are taken. By applying the AIoT device and safety management system proposed in this study to high-risk industrial sites, it will minimize industrial accidents and contribute to the expansion of the social safety net.

Anomaly Sewing Pattern Detection for AIoT System using Deep Learning and Decision Tree

  • Nguyen Quoc Toan;Seongwon Cho
    • Smart Media Journal
    • /
    • v.13 no.2
    • /
    • pp.85-94
    • /
    • 2024
  • Artificial Intelligence of Things (AIoT), which combines AI and the Internet of Things (IoT), has recently gained popularity. Deep neural networks (DNNs) have achieved great success in many applications. Deploying complex AI models on embedded boards, nevertheless, may be challenging due to computational limitations or intelligent model complexity. This paper focuses on an AIoT-based system for smart sewing automation using edge devices. Our technique included developing a detection model and a decision tree for a sufficient testing scenario. YOLOv5 set the stage for our defective sewing stitches detection model, to detect anomalies and classify the sewing patterns. According to the experimental testing, the proposed approach achieved a perfect score with accuracy and F1score of 1.0, False Positive Rate (FPR), False Negative Rate (FNR) of 0, and a speed of 0.07 seconds with file size 2.43MB.

A Study on Predictive Preservation of Equipment Management System with Integrated Intelligent IoT (지능형 IoT를 융합한 장비 운용 시스템의 예지 보전을 위한 연구)

  • Lee, Sang-Deok;Kim, Young-Gon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.6
    • /
    • pp.83-89
    • /
    • 2022
  • Internet of Things technology is rapidly developing due to the recent development of information and communication technology. IoT technology utilizes various sensors to generate unique data from each sensor, enabling diagnosis of system status. However, the equipment management system currently in effect is a post-preservation concept in which administrators must deal with the problem after the problem occurs, which could mean system reliability and availability problems due to system errors, and could result in economic losses due to negative productivity disruptions. Therefore, this study confirmed that edge controller control decision algorithms for more efficient operation of rectifiers in the factory by applying intelligent IoT (AIoT) technology and domain knowledge-based modeling for each sensor data collected based on this, outputting appropriate status messages for each scenario.

Research on Dispersion Prediction Technology and Integrated Monitoring Systems for Hazardous Substances in Industrial Complexes Based on AIoT Utilizing Digital Twin (디지털트윈을 활용한 AIoT 기반 산업단지 유해물질 확산예측 및 통합관제체계 연구)

  • Min Ho Son;Il Ryong Kweon
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.3
    • /
    • pp.484-499
    • /
    • 2024
  • Purpose: Recently, due to the aging of safety facilities in national industrial complexes, there has been an increase in the frequency and scale of safety accidents, highlighting the need for a shift toward a prevention-centered disaster management paradigm and the establishment of a digital safety network. In response, this study aims to provide an information system that supports more rapid and precise decision-making during disasters by utilizing digital twin-based integrated control technology to predict the spread of hazardous substances, trace the origin of accidents, and offer safe evacuation routes. Method: We considered various simulation results, such as surface diffusion, upper-level diffusion, and combined diffusion, based on the actual characteristics of hazardous substances and weather conditions, addressing the limitations of previous studies. Additionally, we designed an integrated management system to minimize the limitations of spatiotemporal monitoring by utilizing an IoT sensor-based backtracking model to predict leakage points of hazardous substances in spatiotemporal blind spots. Results: We selected two pilot companies in the Gumi Industrial Complex and installed IoT sensors. Then, we operated a living lab by establishing an integrated management system that provides services such as prediction of hazardous substance dispersion, traceback, AI-based leakage prediction, and evacuation information guidance, all based on digital twin technology within the industrial complex. Conclusion: Taking into account the limitations of previous research, we used digital twin-based AI analysis to predict hazardous chemical leaks, detect leakage accidents, and forecast three-dimensional compound dispersion and traceback diffusion.

Proposal of New Data Processing Function to Improve the Security of Self-driving Cars' Systems (자율주행 자동차의 시스템 보안 향상을 위한 새로운 데이터처리 기능 제안)

  • Jang, Eun-Jin;Shin, Seung-Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.4
    • /
    • pp.81-86
    • /
    • 2020
  • With the development of the intelligent Internet of Things AIoT that goes beyond the IoT of the Internet of Things, the industry is changing overall. In addition, with the advent of the 4th Industrial Revolution, revolutionary changes and developments are also taking place in the automobile industry. A representative example is "autonomous driving vehicle". Because the domestic and foreign interests in autonomous vehicles have increased, many developments have been made, and although limited, they have developed into the commercialization stage. However, the structure of the autonomous vehicle that collects, analyzes, and controls data using various sensors installed in the vehicle, not the driver, is often insufficiently exposed to hacking due to the lack of multiplexed devices for security. In this case, as this can be a threat not only to the driver, but also to the surrounding environment, this paper proposes a new data processing function to improve the system security of autonomous vehicles.