• 제목/요약/키워드: AISI 4140

검색결과 29건 처리시간 0.023초

RSM-based MOALO optimization and cutting inserts evaluation in dry turning of AISI 4140 steel

  • Hamadi, Billel;Yallese, Mohamed Athmane;Boulanouar, Lakhdar;Nouioua, Mourad;Hammoudi, Abderazek
    • Structural Engineering and Mechanics
    • /
    • 제84권1호
    • /
    • pp.17-33
    • /
    • 2022
  • An experimental study is carried out to investigate the performance of the cutting tool regarding the insert wear, surface roughness, cutting forces, cutting power and material removal rate of three coated carbides GC2015 (TiCN-Al2O3-TiN), GC4215 (Al2O3-Ti(C,N)) and GC1015 (TiN) during the dry turning of AISI4140 steel. For this purpose, a Taguchi design (L9) was adopted for the planning of the experiments, the effects of cutting parameters on the surface roughness (Ra), tangential cutting force (Fz), the cutting power (Pc) and the material removal rate (MRR) were studied using analysis of variance (ANOVA), the response surface methodology (RSM) was used for mathematical modeling, with which linear mathematical models were developed for forecasting of Ra, Fz, Pc and MRR as a function of cutting parameters (Vc, f, and ap). Then, Multi-Objective Ant Lion Optimizer (MOALO) has been implemented for multi-objective optimization which allows manufacturers to enhance the production performances of the machined parts. Furthermore, in order to characterize and quantify the flank wear of the tested tools, some machining experiments were performed for 5 minutes of turning under a depth of 0.5 mm, a feed rate of 0.08 mm/rev, and a cutting speed of 350 m/min. The wear results led to a ratio (VB-GC4215/VB-GC2015) of 2.03 and (VB-GC1015/VB-GC2015) of 4.43, thus demonstrating the efficiency of the cutting insert GC2015. Moreover, SEM analysis shows the main wear mechanisms represented by abrasion, adhesion and chipping.

선박 디젤 엔진용 피스톤 로드의 마찰용접 공정해석 용접부 기계적 특성 (Friction Welding Process Analysis of Piston Rod in Marine Diesel Engine and Mechanical Properties of Welded Joint)

  • 정호승;손창우;오중석;최성규;조종래
    • 소성∙가공
    • /
    • 제20권3호
    • /
    • pp.236-242
    • /
    • 2011
  • The two objectives of this study were, first, to determine the optimal friction welding process parameters using finite element simulations and, second, to evaluate the mechanical properties of the friction welded zone for large piston rods in marine diesel engines. Since the diameters of the rod and its connecting part are very different, the manufacturing costs using friction welding are reduced compared to those using the forging process of a single piece. Modeling is a generally accepted method to significantly reduce the number of experimental trials needed when determining the optimal parameters. Therefore, because friction welding depends on many process parameters such as axial force, initial rotational speed and energy, amount of upset and working time, finite element simulations were performed. Then, friction welding experiments were carried out with the optimal process parameter conditions resulting from the simulations. The base material used in this investigation was AISI 4140 with a rod outer diameter of 280 mm and an inner diameter of 160 mm. In this study, various investigation methods, including microstructure characterization, hardness measurements and tensile and fatigue testing, were conducted in order to evaluate the mechanical properties of the friction welded zone.

플라즈마 질화처리된 중탄소합금강의 내마모특성에 관한 연구 (Study on the Wear Resistant Characteristics of Medium Carbon Alloy Steel Plasma-Nitrided)

  • 조효석;노용식;신호강;이상윤
    • 열처리공학회지
    • /
    • 제5권4호
    • /
    • pp.215-223
    • /
    • 1992
  • This study has been performed to investigate into some effects of temperature, gas mixing ratio and time on the optical microstructure, hardness and wear characteristics of medium carbon alloy steel treated by plasma nitriding. The results obtained from the experiment are summarized as follows: (1) Optical micrographs of AISI 4140 steel plasma-nitrided by the double stage technique have revealed that the nitrided layer is composed of the compound layer and the diffusion layer. The variation in temperature at the first stage gives effects, on the formation of compound layer and the growth rate is shown to be relatively fast at $460^{\circ}C$. (2) The thickness of compound layer has been found to increase with increasing nitrogen percentage in the gas mixture and the holding time. It is therefore recommended that a shorter holding time and a lower nitrogen percentage are more effective to produce a tougher compound layer and a diffusion layer only. (3) X-ray diffraction analysis for AISI 4140 steel has shown that the compound layer consist of ${\gamma}^{\prime}-Fe_4N$ and ${\alpha}-Fe$ and that tough compound layer diffustion layer only can be obtained by the double stage plasmanitriding process. (4) There is also a tendency that the total hardened layer depth increases with increasing temperature, time and nitrogen percentage in the first stage during the double stage plasma nitriding. (5) The wear resistance of plasma nitrided specimens has been found thobe considerably increased compared to the untreated specimens and the amount of increment has appeared to increase further with increasing nitriding temperature, holding time and notrogen percentage of gas mixture in the first stage treatment.

  • PDF

Effect of fatigue crack propagation on natural frequencies of system in AISI 4140 Steel

  • Bilge, Habibullah;Doruk, Emre;Findik, Fehim;Pakdil, Murat
    • Steel and Composite Structures
    • /
    • 제32권3호
    • /
    • pp.305-312
    • /
    • 2019
  • In this study, we investigated the effect of fatigue crack propagation of the beams which have a vital importance in engineering applications, on the natural frequency of the system. Beams which have a wide range of applications, are used as fundamental structural elements in engineering structures. Therefore, early detection of any damages in these structures is of vital importance for the prevention of possible destructive damages. One of the widely used methods of early detection of damages is the vibration analysis of the structure. Hence, it is of vital importance to detect and monitor any changes in the natural frequencies of the structure. From this standpoint, in this study we experimentally investigated the effect of fatigue crack propagation on beams produced from 4140 steel, of the natural frequency of the beam. A crack was opened on the $8{\times}16{\times}500mm$ beam using a 3 mm long and 0.25 mm wide wire erosion. The beam, then, underwent 3 point bending tests at 10 Hz with a dynamic fatigue device and its natural frequencies were measured in scheduled intervals and any changes taking place on the natural frequencies of the beam were measured. This data allowed us to identify and measure the crack occurring on the beam subjected to dynamic loading, during the propagation phase. This method produced experimental data. The experimental data showed that the natural frequency of the beam decreased with the propagation of the fatigue crack on the beam.

EPMA를 이용한 침탄강의 정확하고 신뢰성 있는 탄소농도 측정을 위한 분석조건 최적화 (Optimization of Analytical Condition for Reliable and Accurate Measurement of Carbon Concentration in Carburized Steel by EPMA)

  • 권기훈;박현준;최병호;이영국;문경일
    • 한국재료학회지
    • /
    • 제33권3호
    • /
    • pp.106-114
    • /
    • 2023
  • The carbon concentration in the carburized steels was measured by electron probe microanalysis (EPMA) for a range of soluted carbon content in austenite from 0.1 to 1.2 wt%. This study demonstrates the problems in carbon quantitative analysis using the existing calibration curve derived from pure iron (0.008 wt%C) and graphite (99.98 wt%C) as standard specimens. In order to derive an improved calibration curve, carbon homogenization treatment was performed to produce a uniform Kα intensity in selected standard samples (AISI 8620, AISI 4140, AISI 1065, AISI 52100 steel). The trend of detection intensity was identified according to the analysis condition, such as accelerating voltage (10, 15, 30 keV), and beam current (20, 50 nA). The appropriate analysis conditions (15 keV, 20 nA) were derived. When the carbon concentration depth profile of the carburized specimen was measured for a short carburizing time using the improved calibration curve, it proved to be a more reliable and accurate analysis method compared to the conventional analysis method.

The Effect of the Cutting Parameters on Performance of WEDM

  • Tosun, Nihat
    • Journal of Mechanical Science and Technology
    • /
    • 제17권6호
    • /
    • pp.816-824
    • /
    • 2003
  • In this study, variations of cutting performance with pulse time, open circuit voltage, wire speed and dielectric fluid pressure were experimentally investigated in Wire Electrical Discharge Machining (WEDM) process. Brass wire with 0.25 mm diameter and AISI 4140 steel with 10 mm thickness were used as tool and work materials in the experiments. The cutting performance outputs considered in this study were surface roughness and cutting speed. It is found experimentally that increasing pulse time, open circuit voltage, wire speed and dielectric fluid pressure increase the surface roughness and cutting speed. The variation of cutting speed and surface roughness with cutting parameters is modeled by using a regression analysis method. Then, for WEDM with multi-cutting performance outputs, an optimization work is performed using this mathematical models. In addition, the importance of the cutting parameters on the cutting performance outputs is determined by using the variance analysis (ANOVA).

탄소 섬유 보강 폴리에테르에테르케톤의 마찰 및 마모 거동에 관한 연구 (A Study on Friction and Wear Behavior of Carbon Fiber Reinforced Polyetheretherketone)

  • 류성국;김경웅
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.772-779
    • /
    • 2000
  • The friction and wear behavior of short carbon fiber reinforced polyetheretherketone was studied experimentally under dry sliding conditions against SCM440(AISI 4140) disks with a different surface roughness and hardness at the low sliding speeds and the high pressures on a pin-on-disk apparatus. Under the low disk surface roughness value the earsplitting noise and stick-slip were occurred. The increased adhesion friction and wear factor with stick-slip made the friction and wear behavior worse. Under the high disk surface hardness the break and falling-off of carbon fibers were accelerated. The carbon fibers fallen off from the matrix were ground into powder between two wear surfaces and this phenomenon caused a abrasive friction and wear factor to increase. So the friction and wear behavior became worse. With the transfer film made of wear particles formed on a disk, the carbon powder film formed on a pin lowered a friction coefficient.

  • PDF

A Study on Silicon Nitride Based Ceramic Cutting Tool Materials

  • Park, Dong-Soo
    • Tribology and Lubricants
    • /
    • 제11권5호
    • /
    • pp.78-86
    • /
    • 1995
  • The silicon nitride based ceramic cutting tool materials have been fabricated by gas pressure sintering (GPS) or hot pressing (HP). Their mechanical properties were measured and the effect of the fabrication variables on the properties were examined. Also, effect of adding TiN or TiC particulates on the mechanical properties of the silicon nitride ceramics were investigated. Ceramic cutting tools (ISO 120408) were made of the sintered bodies. Cutting performance test were performed on either conventional or NC lathe. The workpieces were grey cast iron, hardened alloy steel (AISI 4140, HRc>60) and Ni-based superalloy (Inconel 718). The results showed that fabrication variables, namely, sintering temperature and time, exerted a strong influence on the microstincture and mechanical properties of the sintered body, which, however, did not make much difference in wear resistance of the tools. High hardness of the tool containing TiC particulates exhibited good cutting performance. Extensive crater wear was observed on both monolithic and TiN-containing silicon nitride tools after cutting the hardened alloy steel. Inconel 718 was extremely difficult to cut by the current cutting tools.

DLC 박막과 복합처리(Nitriding/DLC)한 박막의 기계적 특성 비교 (Mechanical Properties of DLC Films and Duplex Plasma Nitriding/DLC Coating Treatment Process)

  • 박현준;김민채;김상섭;문경일
    • 한국표면공학회지
    • /
    • 제53권6호
    • /
    • pp.306-311
    • /
    • 2020
  • In this work, diamond-like carbon (DLC) films are coated onto plasma nitrided AISI 4140 steel by DC-pulsed PECVD. One problem of DLC films is their very poor adhesion on steel substrates. The purpose of the nitriding was to enhance adhesion between the substrate and the DLC films. The white layer formation is avoided. Plasma nitriding increased adhesion from 8 N for DLC coating to 25 N for duplex coating. Duplex plasma nitriding/DLC coating was proven to be more effective in improving the adhesion. The purpose of the bond layer was to enhance adhesion between the substrate and the DLC films.