• 제목/요약/키워드: AISI 316L austenitic stainless steel

검색결과 16건 처리시간 0.027초

AISI 316L stainless steel에 저온 플라즈마 침탄 및 질화처리 시가스조성이 표면특성에 미치는 영향 (Effects of Gas Composition on the Characteristics of Surface Layers Produced on AISI316L Stainless Steel during Low Temperature Plasma Nitriding after Low Temperature Plasma Carburizing)

  • 이인섭;안용식
    • 한국표면공학회지
    • /
    • 제42권3호
    • /
    • pp.116-121
    • /
    • 2009
  • The 2-step low temperature plasma processes (the combined carburizing and post-nitriding) offer the increase of both surface hardness and thickness of hardened layer and corrosion resistance than the individually processed low temperature nitriding and low temperature carburizing techniques. The 2-step low temperature plasma processes were carried out for improving both the surface hardness and corrosion resistance of AISI 316L stainless steel. The influence of gas compositions on the surface properties during nitriding step were investigated. The expanded austenite (${\gamma}_N$) was formed on all of the treated surface. The thickness of ${\gamma}_N$ and concentration of N on the surface increased with increasing both nitrogen gas and Ar gas levels in the atmosphere. The thickness of ${\gamma}_N$ increased up to about $20{\mu}m$ and the thickness of entire hardened layer was determined to be about $40{\mu}m$. The surface hardness was independent of nitrogen and Ar gas contents and reached up to about 1200 $HV_{0.1}$ which is about 5 times higher than that of untreated sample (250 $HV_{0.1}$). The corrosion resistance in 2-step low temperature plasma processed austenitic stainless steels was also much enhanced than that in the untreated austenitic stainless steels due to a high concentration of N on the surface.

The Study of Corrosion Behavior of Active Screen Plasma Nitrided Stainless Steels

  • Chiu, L.H.;Chang, C.A.;Yeh, S.H.;Chen, F.S.;Chang, Heng
    • Corrosion Science and Technology
    • /
    • 제6권5호
    • /
    • pp.251-256
    • /
    • 2007
  • Plasma nitriding is a surface treatment process which is increasingly used to improve wear, fatigue and corrosion resistance of industrial parts. Active screen plasma nitriding (ASPN) has both the advantages of the classic cold wall and the hot wall conventional dc plasma nitriding (DCPN) method and the parts to be nitrided are no longer directly exposed to the plasma. In this study, AS plasma nitriding has been used to nitride the UNS S31803 duplex stainless steel, AISI 304 and AISI 316 austenitic stainless steel, and AISI 420 martensitic stainless steel. Treated specimenswere characterized by means of microstructural analysis, microhardness measurements and electrochemical tests in NaCl aerated solutions. Hardness of the nitride cases of AISI 420 stainless steel by Knoop test can get up to 1300 HK0.1. From polarization tests, the corrosion current densities of AISI 420 and UNS S31803specimens ASPN at $420^{\circ}C$ were generally lower than those of their untreated substrates. The corrosion resistance of UNS S31803 duplex stainless steel can be enhanced by plasma nitriding at $420^{\circ}C$ Cowing to the formation of the S-phase.

Creq/Nieq비에 따른 AISI 304L 및 AISI 316L 스테인리스강 용접부의 미세조직 및 전기화학적 양극분극 평가 (Evaluations of Microstructure and Electrochemical Anodic Polarization of AISI 304L and AISI 316L Stainless Steel Weld Metals with Creq/Nieq Ratio)

  • 김연희;장아영;강동훈;고대은;신용택;이해우
    • 대한금속재료학회지
    • /
    • 제48권12호
    • /
    • pp.1090-1096
    • /
    • 2010
  • This pitting corrosion study of welded joints of austenitic stainless steels (AISI 304L and 316L) has addressed the differentiating solidification mode using three newly introduced filler wires with a flux-cored arc welding process (FCAW). The delta ferrite (${\delta}$-ferrite) content in the welded metals increased with an increasing equivalent weight ratio of chromium/nickel ($Cr_{eq}/Ni_{eq}$). Ductility dip cracking (DDC) was observed in the welded metal containing ferrite with none of AISI 304L and 0.1% of AISI 316L. The potentiodynamic anodic polarization results revealed that the $Cr_{eq}/Ni_{eq}$ ratio in a 3.5% NaCl solution didn't much affect the pitting potential ($E_{pit}$). The AISI 316L welded metals with ${\ddot{a}}$-ferrite content of over 10% had a superior $E_{pit}$ value. Though the AISI 316L welded metal with 0.1% ferrite had larger molybdenum contents than AISI 304L specimens, it showed a similar $E_{pit}$ value because the concentration of chloride ions and the corrosion product induced severe damage near the DDC.

$Cr_{eq}/Ni_{eq}$ 당량비에 따른 AISI 316L 스테인리스강의 연성저하균열 특성에 대한 연구 (Effect of Cr/Ni equivalent ratio on ductility-dip cracking in AISI 316L austenitic stainless steel weld metals)

  • 장아영;이동진;김연희;최창현;이상화;변지철;정광호;이해우
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2009년 추계학술발표대회
    • /
    • pp.56-56
    • /
    • 2009
  • AISI 316L 스테인리스강에 새롭게 디자인한 서로 다른 3가지 응고모드를 가진 와이어로 FCAW(Flux Cored Arc Welding)을 하였다. 각각의 3가지 와이어는 Pseudobinary phase diagram에 따라 AF, FA, F모드를 가졌다. 미세조직은 $Cr_{eq}/Ni_{eq}$이 증가할수록 델타 페라이트 함량이 증가하였으며, 초정 상의 경우 초정 오스테나이트에서 초정 페라이트로 변태하였고, 연성저하균열의 민감도가 감소하였다. 연성저하균열은 이동결정립계의 형상에 따라 좌우되며, 미량의 페라이트를 함유한 오스테나이트에서는 페라이트가 핀(Pin) 역할을 제대로 하지 못하여 직선형태의 이동 결정립계 따라 입계 미끄러짐의 메커니즘을 통해 전파되었으며, 곡선형태의 이동 결정립계에서는 델타 페라이트가 핀 역할을 하여 역할을 하여 구속 상태에서 응력집중을 막고 응력을 분산시켜 균열이 전파되는 것을 방해하여 균열이 발생되지 않았다.

  • PDF

MICROSTRUCTURAL OBSERVATION AND TENSILE ISOTROPY OF AN AUSTENITIC ODS STEEL

  • Kim, Tae-Kyu;Bae, Chang-Soo;Kim, Do-Hyang;Jang, Jin-Sung;Kim, Sung-Ho;Lee, Chan-Bock;Hahn, Do-Hee
    • Nuclear Engineering and Technology
    • /
    • 제40권4호
    • /
    • pp.305-310
    • /
    • 2008
  • Based on a composition of 99.4 wt% AISI 316L stainless steel, 0.3wt% Ti and 0.3 wt% $Y_2O_3$, an austenitic ODS steel was fabricated by a process of mechanical alloying, hot isostatic pressing and rolling. Fine oxide particles were observed in the matrix, and their chemical formulations were determined to be $Y_2Si_2O_7$ and TiO. Heat treatment of the cold-rolled sample at $1200^{\circ}C$ induced an isotropic tensile behavior at room temperature and at $700^{\circ}C$. This result would be mainly attributed to the equiaxed grains that form as a result of the heat treatment for recrystallization.

AISI 316L강의 저온 플라즈마침질탄화처리 시 가스조성과 처리시간이 표면특성에 미치는 영향 (Influence of Gas Composition and Treatment Time on the Surface Properties of AISI 316L Austenitic Stainless Steels During Low-Temperature Plasma Nitrocarburizing Treatment)

  • 이인섭
    • 대한금속재료학회지
    • /
    • 제47권11호
    • /
    • pp.716-721
    • /
    • 2009
  • The major drive for the application of low-temperature plasma treatment in nitrocarburizing of austenitic stainless steels lies in improved surface hardness without degraded corrosion resistance. The low-temperature plasma nitrocarburizing was performed in a gas mixture of $N_{2}$, $H_{2}$, and carbon-containing gas such as $CH_{4}$ at $450^{\circ}C$. The influence of the processing time (5~30 h) and $N_{2}$ gas composition (15~35%) on the surface properties of the nitrocarburized layer was investigated. The resultant nitrocarburized layer was a dual-layer structure, which was comprised of a N-enriched layer (${\gamma}_N$) with a high nitrogen content on top of a C-enriched layer (${\gamma}_C$) with a high carbon content, leading to a significant increase in surface hardness. The surface hardness reached up to about $1050HV_{0.01}$, which is about 4 times higher than that of the untreated sample ($250HV_{0.01}$). The thickness of the hardened layer increased with increasing treatment time and $N_{2}$ gas level in the atmosphere and reached up to about $25{\mu}m$. In addition, the corrosion resistance of the treated samples without containing $Cr_{2}N$ precipitates was enhanced than that of the untreated samples due to a high concentration of N on the surface. However, longer treatment time (25% $N_{2}$, 30 h) and higher $N_{2}$ gas composition (35% $N_{2}$, 20 h) resulted in the formation of $Cr_{2}N$ precipitates in the N-enriched layer, which caused the degradation of corrosion resistance.