• Title/Summary/Keyword: AISI

Search Result 404, Processing Time 0.024 seconds

The Apparent Strains of Strain Gages in Cryogenic Environment (극저온 환경에서 스트레인 게이지의 겉보기 변형률 특성에 관한 연구)

  • 주진원;김갑순
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.6
    • /
    • pp.1099-1107
    • /
    • 1992
  • The apparent strain of temperature self-compensated strain gages at cryogenic temperature is presented. By joining the international round robin test on electrical strain gages at cryogenic temperatures, apparent strain curves of up to the fourth order with respect to the temperature are obtained with different strain gages and different materials. The liquid nitrogen and the liquid helium are employed to get the cryogenic environment. The results can be effectively utilized to determine the real strains by mechanical loading at cryogenic temperature. This paper also describes the optimal selection of strain gages and test materials for the use of strain gages at cryogenic temperature.

Corrosion and Nanomechanical Behaviors of 16.3Cr-0.22N-0.43C-1.73Mo Martensitic Stainless Steel

  • Ghosh, Rahul;Krishna, S. Chenna;Venugopal, A.;Narayanan, P. Ramesh;Jha, Abhay K.;Ramkumar, P.;Venkitakrishnan, P.V.
    • Corrosion Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.281-289
    • /
    • 2016
  • The effect of nitrogen on the electrochemical corrosion and nanomechanical behaviors of martensitic stainless steel was examined using potentiodynamic polarization and nanoindentation test methods. The results indicate that partial replacement of carbon with nitrogen effectively improved the passivation and pitting corrosion resistance of conventional high-carbon and high- chromium martensitic steels. Post-test observation of the samples after a potentiodynamic test revealed a severe pitting attacks in conventional martensitic steel compared with nitrogen- containing martensitic stainless steel. This was shown to be due to (i) microstructural refinement results in retaining a high-chromium content in the matrix, and (ii) the presence of reversed austenite formed during the tempering process. Since nitrogen addition also resulted in the formation of a $Cr_2N$ phase as a process of secondary hardening, the hardness of the nitrogen- containing steel is slightly higher than the conventional martensitic stainless steel under tempered conditions, even though the carbon content is lowered. The added nitrogen also improved the wear resistance of the steel as the critical load (Lc2) is less, along with a lower scratch friction coefficient (SFC) when compared to conventional martensitic stainless steel such as AISI 440C.

Corrosion and Photo-Reflection Behavior of Aluminum and Stainless Steel During Immersion Test in Salt Solution (3 wt% NaCl 수용액에서 알루미늄과 스테인리스강의 부식에 따른 광 반사 거동)

  • Cho, Soo Yeon;Na, Hyeon Gyu;Cho, Hye Ri;Moon, Jong Ju;Ahn, Tae-Jung;Jang, HeeJin
    • Corrosion Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.109-114
    • /
    • 2020
  • The photo-reflectance of aluminum and AISI 304 stainless steel during cyclic immersion test in 3 wt% NaCl solution was examined in this study. Overall, corrosion was not recognized by a visual inspection or weight measurement up to 310 h. When evaluated, it was noted that the roughness of the specimens did not change significantly. However, localized corrosion, which is located at the vicinity of intermetallic precipitation of aluminum or at the grain boundary of stainless steel, was confirmed by the use of an optical microscope and scanning electron microscopy after tens of hours of utilizing the corrosion test. In this respect, an increase of the peak intensity for metallic Al after 90 h of test, and for metallic Fe after 153 h was detected from the X-ray photoelectron spectra. In this context, it was shown that from the photo-reflectance spectra, the reflection of the visible light from the tested samples was changed noticeably over the test duration. As a result, the intensity of reflected light was decreased up to 90 h ~ 153 h, and thereafter was shown to increase higher than the initial intensity before the corrosion test.

탄소와 질소 함량 변화에 따른 type 347 스테인리스강의 피로균열거동 연구

  • Min, Gi-Deuk;Kim, Dae-Hwan;Lee, Bong-Sang;Kim, Seon-Jin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.42.1-42.1
    • /
    • 2009
  • 오스테나이트 스테인리스강은 우수한 내식성 및 기계적 특성으로 인해 구조용 재료로 널리 사용되고 있다. 표준원전 경수로의 경우 가압기 밀림관소재로 Nb 안정화 오스테나이트 스테인리스강인 type 347 스테인리스강이 사용되고 있다. 그러나 원전배관에서는 운전중 배관내 온도편차에 의한 열응역과 하중변화에 의한 기계적하중에 의해 피로손상을 받는다. 일반적으로 범용 오스테나이트 스테인리스강(AISI 304, 316)의 피로균열 성장거동에 대한 연구결과는 국내외적으로 다수 축적되어 있으나 type 347 탄소, 질소 함량에 따른 기계적 특성 및 피로균열성장 연구는 매우 미비하다. 따라서 본 연구에서는 탄소와 질소의 함량에 따른 기계적거동을 평가하고, 이에 따른 피로균열전파속도를 관찰하여 스테인리스강의 정확한 피로균열전파속도 곡선을 제시하고자 한다. 실험에 사용된 시편은 두께 5mm, 폭 25.4mm CT시편을 사용하였으며, 1mm의 예비균열을 주었다. 그리고 실험온도는 상온과 원전가동온도인 $316^{\circ}C$에서 실시하였으며, 주파수는 10Hz를 주었다. 실험결과 각 함량에 따른 type 347의 미세조직 관찰결과 기지내에 압연방향을 따라 조대한 석출물의 흐름이 관찰되었으며, 크기나 분포가 큰 차이를 보였다. C+N 함량이 낮은 시편은 주로 $0.1\;{\mu}m$ 이하의 미세한 입자들이 오스테나이트 기지조직의 입내와 입계에 고르게 분포되어 있었다. 그러나 C+N 함량이 높은 시편의 경우에는 $0.1\;{\mu}m$ 이하의 미세한 입자들과 함께 국부적으로 $1\sim10\;{\mu}m$의 조대한 입자들이 분포하고 있는 것이 관찰되었다. 그리고 질소의 함량이 높아짐에 따라 인장강도는 증가하였으며, 피로시험결과 고온에서 실험한 피로균열성장률 곡선이 상온보다 높게 나타남을 확인할 수 있었다. 그리고 질소가 적게 첨가되고 탄소의 함량이 많을수록 피로균열성장률은 ASME 곡선보다 낮게 나타났다.

  • PDF

Errects of the Length of Carbon Fiber on the Wear Properties of Carbon/Carbon Composites (탄소/탄소 복합재료의 마모특성에 대한 탄소섬유 길이의 영향)

  • Ha, Hun-Seung;Kim, Dong-Kyu;Park, In-Seo;Im, Yeon-Su;Yun, Byung-Il
    • Korean Journal of Materials Research
    • /
    • v.3 no.3
    • /
    • pp.292-299
    • /
    • 1993
  • In this paper the effects of the length of carbon fiber on the wear properties of carboni carbon composites were investigated. Carbon/carbon composites were fabricated by the liquid impregnation method using the resol-type phenolic resin as a matrix precursor and PAN-based, non-surface treated carbon fiber as a reinforcement. The measured values of the friction coefficient of carbon/carbon composites against AlSl 304 stainless steel ranged from 0.2 to 0.3 under the operating condition used in this study. The effect of the length of carbon fiber on the friction coefficient of carbon/carbon composites were not found. But, it was realized that the wear rate of carbon/carbon composites tends to increase, as the length of carbon fiber increases.

  • PDF

Study on the Mechanical Properties of Mo Series High Speed Tool Steel Austempered (Mo계 고속도 공구강의 오스템퍼렁에 따른 기계적 성질에 관한 연구)

  • Choi, M.S.;Lee, H.W.;Rho, Y.S.;Kim, Y.H.;Kim, H.G.;Lee, S.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.4 no.1
    • /
    • pp.1-12
    • /
    • 1991
  • This study has been performed to find out the effect of austenitizing temperature, austempering temperature and its holding time, and tempering cycle on the mechanical properties such as impact resistance, hardness etc. of AISI $M_2$ Mo series high speed tool steel austempered or tempered after austempering treatment. The results obtained from the experiment are as follows ; (1) Optical micrograph has revealed that the transformation rate of bainite is delayed as the austenitizing temperature increases and that bainite is most apparently transformed at an austempering temperature of $290^{\circ}C$. (2) The amount of retained austenite during austempering has been analysed to be increased by the X-ray diffraction technique as the transformation product of bainite is increased. It has also been shown that the longer the holding time of austempering, the more the transformation quantity of bainite is formed, exhibiting, however, that the rate of bainitic transformation is considerably retarded after a certain period of holding time elapses. (3) Hardness measurement has shown that hardness values obtained after austempering increase with decreasing the amount of retained austenite. (4) The austempering and then tempering cycle has been formed to give hardness values which are more greatly improved as austenitizing temperature is increased. (5) The mechanical property of the specimen primary-tempered for 1 hour at $550^{\circ}C$ after austempering for 2 hours at $290^{\circ}C$ from the austenitizing temperature range of $1180^{\circ}C$ to $1210^{\circ}C$ have been estimated to be good values.

  • PDF

REACTION STEPS OF A FORMATION OF THE BLACK LAYER BEIWEEN IRON NTIRIDE AND TiN COATING

  • Baek, W.S.;Kwon, S.C.;Lee, J.Y.;Rha, J.J.;Lee, S.R.;Kim, K.H.
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.312-316
    • /
    • 1999
  • The interfacial structure of duplex treated AISI 4140 consisting of iron nitride and TiN layer was characterized by optical microscope, SEM and XRD. A black layer was formed from the decomposition of iron nitride during Ti ion bombardment. The black layer was characterized as an a-Fe phase transformed from the iron nitride by XRD. In order to identify the formation mechanism of the black layer, a thermal analysis of iron nitride undertaken by DSC method. As an iron nitride was mostly consisted of ${\gamma}$'-Fe$_4$N and $\varepsilon$-$Fe_3$N phase after plasma nitriding, in this study, a ${\gamma}$'$-Fe_4$N and $\varepsilon$-$Fe_3$N powders were separately prepared by the different processing conditions of gas nitriding of iron powder in the fluidized bed. From the DSC thermal analysis, the phase transformation of ${\gamma}$'$-Fe_4$N, $\varepsilon$-$Fe_3$N was followed the path of transformation; $ \Upsilon{'}-Fe_4$Nlongrightarrow${\gamma}$-Felongrightarrowa-Fe and of $\varepsilon$-$Fe_3$Nlongrightarrow$\varepsilon$-$Fe_{2.5}$ /N+${\gamma}$'$-Fe_4$Nlongrightarrow${\gamma}$'-Fe$_4$Nlongrightarrow${\gamma}$longrightarrowFelongrightarrowalongrightarrowFe, respectively. It explains the reason why the $\varepsilon$ $-Fe_3$N phase disappeared in the first time and then ${\gamma}$'-Fe$_4$N in the formation of the black layer in the duplex coating.

  • PDF

Austenite Stability and Mechanical Properties of Nanocrystalline FeNiCrMoMnSiC Alloy Fabricated by Spark Plasma Sintering (방전플라즈마소결로 제조된 나노결정 FeNiCrMoMnSiC 합금의 오스테나이트 안정성과 기계적 특성)

  • Park, Jungbin;Jeon, Junhyub;Seo, Namhyuk;Kim, Gwanghun;Son, Seung Bae;Lee, Seok-Jae
    • Journal of Powder Materials
    • /
    • v.28 no.4
    • /
    • pp.336-341
    • /
    • 2021
  • In this study, a nanocrystalline FeNiCrMoMnSiC alloy was fabricated, and its austenite stability, microstructure, and mechanical properties were investigated. A sintered FeNiCrMoMnSiC alloy sample with nanosized crystal was obtained by high-energy ball milling and spark plasma sintering. The sintering behavior was investigated by measuring the displacement according to the temperature of the sintered body. Through microstructural analysis, it was confirmed that a compact sintered body with few pores was produced, and cementite was formed. The stability of the austenite phase in the sintered samples was evaluated by X-ray diffraction analysis and electron backscatter diffraction. Results revealed a measured value of 51.6% and that the alloy had seven times more austenite stability than AISI 4340 wrought steel. The hardness of the sintered alloy was 60.4 HRC, which was up to 2.4 times higher than that of wrought steel.

Evaluation of Creep-Fatigue Damage in 304 Stainless Steel using Ultrasonic Non-Destructive Test (초음파 비파괴 검사를 이용한 AISI 304 스테인리스강의 크리프-피로 손상의 평가)

  • Lee, Sung Sik;Oh, Yong Jun;Nam, Soo Woo
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.12
    • /
    • pp.924-929
    • /
    • 2011
  • It is well known that grain boundary cavitation is the main failure mechanism in austenitic stainless steel under tensile hold creep-fatigue interaction conditions. The cavities are nucleated at the grain boundary during cyclic loading and grow to become grain boundary cracks. The attenuation of ultrasound depends on scattering and absorption in polycrystalline materials. Scattering occurs when a propagation wave encounters microstructural discontinuities, such as internal voids or cavities. Since the density of the creep-fatigue cavities increases with the fatigue cycles, the attenuation of ultrasound will also be increased with the fatigue cycles and this attenuation can be detected nondestructively. In this study, it is found that individual grain boundary cavities are formed and grow up to about 100 cycles and then, these cavities coalesce to become cracks. The measured ultrasonic attenuation increased with the cycles up to cycle 100, where it reached a maximum value and then decreased with further cycles. These experimental measurements strongly indicate that the open pores of cavities contribute to the attenuation of ultrasonic waves. However, when the cavities develop, at the grain boundary cracks whose crack surfaces are in contact with each other, there is no longer any open space and the ultrasonic wave may propagate across the cracks. Therefore, the attenuation of ultrasonic waves will be decreased. This phenomenon of maximum attenuation is very important to judge the stage of grain boundary crack development, which is the indication of the dangerous stage of the structures.

Comparison of Rolling Element Loads and Stress-based Fatigue Life Predictions for Ball Bearings (볼 베어링의 전동체 기반 및 응력 기반 접촉 피로수명의 비교)

  • Kwak, Jae Seob;Park, Yong Whan;Kim, Chan Jung;Kim, Tae Wan
    • Tribology and Lubricants
    • /
    • v.36 no.6
    • /
    • pp.371-377
    • /
    • 2020
  • In In this study, we compared the results of a ball bearing life prediction model based on rolling element loads with the results of fatigue life prediction of ball bearings when a stress-based contact fatigue life prediction technique is applied to the ball bearing. We calculate the load acting on each rolling element by the external load of the bearing and apply the result to the Lundberg-Palmgren (LP) theory to calculate ball bearing life based on the rolling element. We also calculate stress-based ball bearing life through contact and fatigue analyses based on contact modeling of the ball and raceway while considering the fatigue test results of AISI 52100 steel. In stress-based life prediction, we use three high-cycle fatigue-determination equations that can predict the fatigue life when multi-axis proportional loads such as rolling-slide contact conditions are applied. These equations are derived from the stress invariant and critical plane methods and the mesoscopic approach. Life expectancy results are compared with those of the LP model. Results of the analysis indicated that the fatigue life was predicted to be lower in the order of the Crossland, Dang Van, and Matake models. Of the three, the Dang Van fatigue model was found to be the closest to the LP life.