• Title/Summary/Keyword: AISI

Search Result 404, Processing Time 0.027 seconds

A Study on Fatigue strength by hardenability of Boron Addition Steel (보론 첨가강의 경화기구에 따른 기계적 성질에 관한 연구)

  • Lee, Jong-Hyung;Yoo, Duck-Sang;Park, Shin-Kyu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.4
    • /
    • pp.299-305
    • /
    • 2003
  • This research is for the relationship with heat treatment cooling temprature and the characteristic of Mechanical properties of Boron-Addition-Steel, the main material and SM25C steel, the sub material, structure viewing fractography, hardness test, tensite test and are carried out after the manufacturing small-specimen treated with heat of $750^{\circ}C$, $850^{\circ}C$, $1050^{\circ}C$. The influence to the Mechanical properties accompanied by AISI51B20, Boron-Addition-steel shows the following result. 1. The influenc of heat treatment by the content of cabon-steel is dominant. Addition of boron result is Strengthening structure effectively by segregation and improving over all mechanical characters such as good. it results from the increase of temacity by the stability of inter granular with improvement of harden-ability. 2. Boron-Addition-Steel exist in the from of martensite structure accompanied by the ferrite precipitition centering around grain boundary, and is improved to Hv 200. 3. The height of harden-ability and fatigue stress the influence of heat results from crystal structure of martensite by difference of strength level in the structure of ferrite and doesn't have am effect on sensibility of temperature, and turns out to defend on production and growth of Matrix-structure-factor.

  • PDF

Effects of Forming Depth on the Deformation Behavior of Cup-like Tubes in Tube Spinning Process (튜브 스피닝 공정에서 성형깊이가 컵형 튜브의 변형거동에 미치는 영향)

  • Shin, Y.C.;Yoon, D.J.;Lim, S.J.;Choi, H.J.
    • Transactions of Materials Processing
    • /
    • v.21 no.6
    • /
    • pp.360-365
    • /
    • 2012
  • The aim of this study was to investigate the effects of forming depth on the deformation behavior of cup-like tubes made of AISI1020 steel in tube spinning process. Spinning process was performed on cup-like tubes, which had an inner diameter of 34mm and thicknesses of 7, 8.5 or 11.5mm. The forming depths achieved were 3, 4, and 5.5mm. The complex deformation behaviors occurring during the tube spinning process was explained using the experimental results. Also analyzed were the causes of the material buildup and the bulge defect of inner surface, observed on cross section of tubes. The relationship between tube spinning conditions and the height of bulge defect was examined. The results indicate that bulge defect is increased with a decrease of the forming depth. Moreover, a critical forming depth exists for preventing the generation of the bulge defect in the tube spinning process. The present results will be useful for future decisions of forming depths for successful tube spinning of cup-like tubes.

TDS analysis of graphite divertor tiles

  • 이상균;임종연;최상철;서인용;신용현;홍승수;정광화;임기학
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.41-41
    • /
    • 1999
  • 핵융합 장치의 플라즈마 운행동안 토카막 내벽에 도달하는 온도는 최저 $600^{\circ}C$ 이상이다. 또한 플라즈마 자체와 사용자(User)들의 시료로부터 방출되는 입자들에 의한 내벽 충격(damage)은 장기간의 안정적인 운행 및 연구에 심각한 영향을 미친다. 이러한 이유로 토카막 제작시 내벽 보호재의 선정은 매우 높은 비중을 차지한다. Graphite는 높은 융점과 가공의 용이성으로 토카막 내벽의 보호재로 선호되는 물질이다. 그러나 토카막 용기(vessel)에 사용되는 스테인레스 스틸(AISI 316LN)보다 약 50배 이상의 기체 방출율(outgassing rate)을 가진다. 그러므로 장착 이전의 초기 청정화 과정이 매우 중요하며, 특히 400m2의 약 2톤(2000kg)의 graphite가 사용되므로 대량 처리를 할 수 있는 방법의 선정도 함께 개발되어야 한다. 본 연구팀에서는 처음 10개 회사의 시제품을 검토한 후, 최종 2개 회사의 4가지 종류의 시료를 선정하였다. 선정된 시료는 Union Carbide의 ATJ와 Toyo Tanso의 IG-110, IG-43, Ig-430이다. 시료는 비절삭유(oil-free) 가공에 의해 80$\times$2$\times$3 (mm)의 크기로 제작되었고 에탄올과 메탄올 용액에서 초음파 세척되었다. 건조된 시료는 TDS(Thermal Desorption Spectroscopy) 장치에 장착되어 세 단계의 실험을 하였다. 처음은 승온(상온 ~100$0^{\circ}C$)에 의한 방출 기체의 성분 분석, 두 번째는 장기간 (2주) 대기 노출 후 주요 방출 기체의 온도에 따른 변화, 마지막으로는 특정 기체에서의 장기간 보관후, 주요 방출 기체의 온도에 따른 변화를 조사하였다. 다음 그림 1은 본 연구에서 사용된 TDS 장치의 개략도이고 그림 2는 TDS 장치에 장착 직 후와 대기 중 노출된 시료들의 온도증가에 따른 총 압력의 변화이다.

  • PDF

Compression tests of cold-formed channel sections with perforations in the web

  • Kwon, Young Bong;Kim, Gap Deuk;Kwon, In Kyu
    • Steel and Composite Structures
    • /
    • v.16 no.6
    • /
    • pp.657-679
    • /
    • 2014
  • This paper describes a series of compression tests performed on cold-formed steel channel sections with perforations in the web (thermal studs) fabricated from a galvanized steel plate whose thickness ranged from 1.0 mm to 1.6 mm and nominal yield stress was 295 MPa. The structural behavior and performance of thermal studs undergoing local, distortional, or flexural-torsional buckling were investigated experimentally and analytically. The compression tests indicate that the slits in the web had significant negative effects on the buckling and ultimate strength of thin-walled channel section columns. The compressive strength of perforated thermal studs was estimated using equivalent solid channel sections of reduced thickness instead of the studs. The direct strength method, a newly developed and adopted alternative to the effective width method for designing cold-formed steel sections in the AISI Standard S100 (2004) and AS/NZS 4600 (Standard Australia 2005), was calibrated to the test results for its application to cold-formed channel sections with slits in the web. The results verify that the DSM can predict the ultimate strength of channel section columns with slits in the web by substituting equivalent solid sections of reduced thickness for them.

Cutting Performance of Si$_3$N$_4$ Based SiC Ceramic Cutting Tools

  • Kwon, Won-Tae;Kim, Young-Wook
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.388-394
    • /
    • 2004
  • Composites of Si$_3$N$_4$-SiC containing up to 30 wt% of dispersed SiC particles were fabricated via hot-pressing with an oxynitride glass. To determine the effect of sintering time and SiC content on the mechanical properties and the cutting performance, the composites with fixed 8hr-sintering time and 20 wt% SiC content were fabricated and tested. Fracture toughness of the composites increased with increasing sintering time, while the hardness increased as the SiC content increased up to 20 wt%. The hardness of the composites was relatively independent of the grain size and the sintered density. For machining heat-treated AISI4140, the insert with 20 wt% SiC sintered for 8hr showed the longest tool life while the insert with 20 wt% SiC sintered for 12hr showed the longest tool life for machining gray cast iron. An effort was made to relate the mechanical properties, such as hardness, fracture toughness and wear resistance coefficient with the tool life. However, no apparent relationship was found between them. It may be stated that tool life is affected by not only the mechanical properties but also other properties such as surface roughness, density, grian size and the number of the inherent defects in the inserts.

A study for Application of ion Nitriding on EHA Hydraulic Pump Parts (EHA 유압펌프 부품의 플라즈마 질화기술 적용에 관한 연구)

  • Kim Eun-Young;Kim Bomsok;Lee Sangyul
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.6
    • /
    • pp.234-240
    • /
    • 2005
  • In this study, ion nitriding of a EHA pump part made of AISI 4340 steel was performed under different applied power conditions to study the relationship between dimensional changes of specimens and the type of applied power source. Microstructures and micohardness distribution at different processing conditions were also examined. Duplex surface treatment of ion nitriding with the optimum process conditions to produce the minimum dimensional variation in a EHA pump part and a TiN thin film coating by unbalanced magnetron sputtering was performed and the specimens with a duplex surface treatment were subjected to a high speed wear test to evaluate the wear performance of EHA hydraulic pump parts with various surface treatment conditions. Results indicated that uniform and continuous surface layer with a minimum dimensional variation could be obtained by ion nitriding with bipolar mode power source and much enhanced wear characteristics with a duplex surface treatment could be obtained, compared with results from ion nitriding or single-layerd TiN coating specimens.

TIG Welding Characteristics of Stainless Steel by Design of Experiment (실험계획법에 의한 스테인레스강의 TIG용접특성)

  • Chung, Joong Gyo;Park, Kyoung Do;Kang, Dae Min
    • Journal of Power System Engineering
    • /
    • v.18 no.3
    • /
    • pp.106-111
    • /
    • 2014
  • Welding is very popular method for joining two or more metals. However, welding causes residual stress and distortion and these give a bad influence to the structure strength. In this paper, TIG welding technique was performed to investigate the joint characteristics of AISI321 steel. For its evaluation, the orthogonal array method and variance analysis were applied with three factors of electric current, travel speed and argon gas and also three levels of each factor to tensile tests for optimum design. From the results, the increaser weld speed the narrower bead width and the lower weld penetration. The increaser electric current the brighter argon gas and the wider bead width. Also weld speed influenced most on the tensile strength and presumption range of tensile strength at optimal condition from reliability 95% was estimated to $635.02{\pm}14.64$. In addition the increaser weld speed and electric current the fracture occurred around bead vicinity.

Friction and Wear of Nitrogen Incorporated Diamond-like Carbon Films Under a Vacuum

  • Yoon, Eui-Sung;Kong, Hosung;Lee, Kwang-Ryeol;Oh, Jae-Eung
    • Tribology and Lubricants
    • /
    • v.11 no.5
    • /
    • pp.59-65
    • /
    • 1995
  • Tribological behaviors of nitrogen incorporated amorphous diamond-like carbon films were experimentally measured under a vacuum ($3 \times 10^{-5}$ Torr) using a ball (AISI 52100 steel)-on-disk wear-rig. Nitrogen incorporated DLC films were deposited by r.f. plasma assisted chemical vapor deposition method. Mixtures of benzene and ammonia or nitrogen gases were used as the reaction gases for the r.f. PACVD, and Si (100) wafer was used as the substrate. In the tribo-test, effects of DLC film thickness and normal load in friction were measured and discussed. Results showed that friction of nitrogen incorporated DLC films from a mixture gas of benzene and ammonia was lower than that of 100% benzene, specially in the measurement of minimum coefficient of friction. Differences in frictional characteristics of nitrogen incorporated DLC films were explained with the changes in chemical structures of the films. Result also showed that friction of DLC films increased with the sliding contact cycle, which remarkably accompanied with roll-shaped wear debris. Mechanisms and roles of the polymer-like wear debris were presented and discussed.

In-Process Evaluation of Surface Characteristics in Machining

  • Jang, Dong-Young;Hsiao, Alex
    • Tribology and Lubricants
    • /
    • v.11 no.5
    • /
    • pp.99-107
    • /
    • 1995
  • This paper reported research results to develop an algorithm of on-lin evaluation of surface profiles and roughness generated by turning. The developed module consisted of computer simulation of surface profiles using mechanism of cutting mark formation and cutting vibrations, and online measurement of cutting vibrations. The relative cutting vibrations between tool and worpkiece were measured through an inductance pickup at the rate of one sample per rotation of the workpiece. The sampling process was monitored using an encoder to avoid conceling out the phase lag between waves. The digital cutting signals from the Analog-to-Digital converter were transferred to the simulation module of surface profile where the surface profiles were generated. The developed algorithm or surface generation in a hard turning was analyzed through computer simulations to consider the stochastic and dynamic nature of cutting process. Cutting tests were performed using AISI 304 Stainless Steel and carbide inserts in practical range of cutting conditions. Experimental results showed good correlation between the surface profiles and roughness obtained using the developed algorithm and the surface texture measured using a surface profilemeter. The research provided the feasibility to monitor surface characteristics during tribelogical tests considering wear effect on surface texture in machining.

Analysis of the Sliding Wear Mechanism of Pure Iron Tested Against Different Counterparts in Various Atmospheres (상대재와 분위기에 따른 순철의 미끄럼 마멸 기구 분석)

  • Koo, B.W.;Gwon, H.W.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.26 no.6
    • /
    • pp.365-371
    • /
    • 2017
  • During sling wear of a ferrous metal, a surface layer is formed. Its microstructure, constituting phases, and mechanical property are different from those of the original wearing material. Since wear occurs at the layer, it is important to characterize the layer and understand how wear rate changes with different layers. Various layers are formed depending on external wear conditions such as load, sliding speed, counterpart material, and environmental conditions. In this research, sliding wear tests of pure iron were carried out against two different counterparts (AISI 52100 bearing steel and $Al_2O_3$) in the air and in an inert Ar gas atmosphere. Pure iron was employed to exclude other effects from secondary phases in steel on the wear. Wear tests were performed at room temperature. Worn surfaces, wear debris, and cross-sections were analyzed after the test. It was found that these two different counterparts and environments produced diverse layers, resulting in significant changes in wear rate. Against the bearing steel, pure iron showed higher wear rate in an Ar atmosphere due to severe adhesion than that in the air. On the contrary, the iron showed much higher wear rate in the air against $Al_2O_3$. Different layers and wear rates were analyzed and discussed by oxidation, severe plastic deformation, and adhesion at wearing surfaces.