• 제목/요약/키워드: AISC-ASD

검색결과 15건 처리시간 0.025초

Minimum-weight design of non-linear steel frames using combinatorial optimization algorithms

  • Hayalioglu, M.S.;Degertekin, S.O.
    • Steel and Composite Structures
    • /
    • 제7권3호
    • /
    • pp.201-217
    • /
    • 2007
  • Two combinatorial optimization algorithms, tabu search and simulated annealing, are presented for the minimum-weight design of geometrically non-linear steel plane frames. The design algorithms obtain minimum weight frames by selecting suitable sections from a standard set of steel sections such as American Institute of Steel Construction (AISC) wide-flange (W) shapes. Stress constraints of AISC Load and Resistance Factor Design (LRFD) specification, maximum and interstorey drift constraints and size constraints for columns were imposed on frames. The stress constraints of AISC Allowable Stress Design (ASD) were also mounted in the two algorithms. The comparisons between AISC-LRFD and AISC-ASD specifications were also made while tabu search and simulated annealing were used separately. The algorithms were applied to the optimum design of three frame structures. The designs obtained using tabu search were compared to those where simulated annealing was considered. The comparisons showed that the tabu search algorithm yielded better designs with AISC-LRFD code specification.

Optimum design of composite steel frames with semi-rigid connections and column bases via genetic algorithm

  • Artar, Musa;Daloglu, Ayse T.
    • Steel and Composite Structures
    • /
    • 제19권4호
    • /
    • pp.1035-1053
    • /
    • 2015
  • A genetic algorithm-based minimum weight design method is presented for steel frames containing composite beams, semi-rigid connections and column bases. Genetic Algorithms carry out optimum steel frames by selecting suitable profile sections from a specified list including 128 W sections taken from American Institute of Steel Construction (AISC). The displacement and stress constraints obeying AISC Allowable Stress Design (ASD) specification and geometric (size) constraints are incorporated in the optimization process. Optimum designs of three different plane frames with semi-rigid beam-to-column and column-to-base plate connections are carried out first without considering concrete slab effects on floor beams in finite element analyses. The same optimization procedures are then repeated for the case of frames with composite beams. A program is coded in MATLAB for all optimization procedures. Results obtained from the examples show the applicability and robustness of the method. Moreover, it is proved that consideration of the contribution of concrete on the behavior of the floor beams enables a lighter and more economical design for steel frames with semi-rigid connections and column bases.

A comparative study on optimum design of multi-element truss structures

  • Artar, Musa
    • Steel and Composite Structures
    • /
    • 제22권3호
    • /
    • pp.521-535
    • /
    • 2016
  • A Harmony Search (HS) and Genetic Algorithms (GA), two powerful metaheuristic search techniques, are used for minimum weight designs of different truss structures by selecting suitable profile sections from a specified list taken from American Institute of Steel Construction (AISC). A computer program is coded in MATLAB interacting with SAP2000-OAPI to obtain solution of design problems. The stress constraints according to AISC-ASD (Allowable Stress Design) and displacement constraints are considered for optimum designs. Three different truss structures such as bridge, dome and tower structures taken from literature are designed and the results are compared with the ones available in literature. The results obtained from the solutions for truss structures show that optimum designs by these techniques are very similar to the literature results and HS method usually provides more economical solutions in multi-element truss problems.

지반조건을 고려한 브레이스된 강골조 구조물의 내진 최적설계 (Optimum Design of Braced Steel Framed Structures Considering Soil Condition Under Earthquake Loads)

  • 박문호;김기욱;이승조;박정활
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제10권4호
    • /
    • pp.97-107
    • /
    • 2006
  • 본 연구는 지반조건을 고려한 브레이스된 강골조 구조물의 연속 및 이산화 내진 최적설계에 관한 내용이다. 지반조건을 고려한 구조해석과 연속 및 이산화 최적설계를 동시에 수행할 수 있는 내진 최적설계 프로그램을 개발하여 이를 브레이스가 없는 경우, Z-형, X-형의 브레이스 배치형태를 사용한 강골조 구조물에 적용하였고, 정하중, 지진하중을 고려하여 해석하였다. AISC-ASD 시방규정과 ATC-3-06에 규정한 사용성, 허용층간변위 및 다양한 제약조건을 모두 만족하는 최소중량, 설계변수 등을 도출하고, 특히 Newmark-Hall 설계스펙트럼 해석과 지반조건을 고려한 ATC 설계스펙트럼 해석 및 ATC 등가정적해석의 해석결과를 비교 분석함으로서 보다 내진에 적합한 브레이스 배치 형태 및 적용한 해석방법이 최적설계에 미치는 영향을 찾고자 하는데 그 목적이 있다.

강골조 구조물의 내진 최적설계에 의한 브레이스 부재 배치에 관한 연구 (The Study on the Placements of Brace Members Using Optimum Seismic Design of Steel Frames)

  • 김기욱;박문호
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제9권1호
    • /
    • pp.111-119
    • /
    • 2005
  • 본 연구는 지진하중을 고려한 브레이스된 강골조 구조물의 연속 및 이산화 최적설계에 관한 내용이다. 구조해석과 연속 및 이산화 최적설계를 동시에 수행할 수 있는 최적설계 프로그램을 개발하여 이를 브레이스가 없는 경우, Z-형(V), Z-형(역V), X-형(A), X-형(B), X-형(C), K-형 등의 다양한 브레이스 배치형태를 사용한 강골조 구조물에 적용하였고, 정하중, 지진하중을 고려하여 해석하였다. AISC-ASD 시방규정과 ATC-3-06에 규정한 사용성, 허용층간변위 및 다양한 제약조건을 모두 만족하는 최소중량, 설계변수 등을 도출하고, 다양한 예들의 해석결과를 비교 분석하여 내진에 적합한 브레이스 배치 형태를 제시하고자 하는데 그 목적이 있다.

Harmony search algorithm for optimum design of steel frame structures: A comparative study with other optimization methods

  • Degertekin, S.O.
    • Structural Engineering and Mechanics
    • /
    • 제29권4호
    • /
    • pp.391-410
    • /
    • 2008
  • In this article, a harmony search algorithm is presented for optimum design of steel frame structures. Harmony search is a meta-heuristic search method which has been developed recently. It is based on the analogy between the performance process of natural music and searching for solutions of optimization problems. The design algorithms obtain minimum weight frames by selecting suitable sections from a standard set of steel sections such as American Institute of Steel Construction (AISC) wide-flange (W) shapes. Stress constraints of AISC Load and Resistance Factor Design (LRFD) and AISC Allowable Stress Design (ASD) specifications, maximum (lateral displacement) and interstorey drift constraints, and also size constraint for columns were imposed on frames. The results of harmony search algorithm were compared to those of the other optimization algorithms such as genetic algorithm, optimality criterion and simulated annealing for two planar and two space frame structures taken from the literature. The comparisons showed that the harmony search algorithm yielded lighter designs for the design examples presented.

중심압축하중을 받는 스테인리스 강관 기둥의 좌굴내력에 관한 연구 (A Study on the Buckling Strength of Centrally Compressed Stainless Steel Tubular Columns)

  • 장호주;양영성
    • 한국강구조학회 논문집
    • /
    • 제17권2호통권75호
    • /
    • pp.207-216
    • /
    • 2005
  • 본 논문은 스테인리스 각형강관 및 원형강관에 대한 좌굴내력에 관한 연구로서 건축구조용 강재로서의 적용성 검토를 위해, 세장비를 주요 변수로 한 소재의 인장강도실험과 stub-column의 압축강도실험, 기둥의 중심압축실험을 실시하여 강재의 기계적 성질과 기둥의 강도 및 거동을 파악한다. 또한 이론해석과 각국 기준식(AIK-LSD, AISC-LRFD, AIJ-LSD, SIJ-ASD) 및 복수강도곡선의 적용을 통한 이론값과 실험값을 비교함으로서 건축구조용 강재로서 적용성 검토와 구조설계기준 확립을 위한 기초 자료를 구하는데 목적이 있다.

Tabu search based optimum design of geometrically non-linear steel space frames

  • Degertekin, S.O.;Hayalioglu, M.S.;Ulker, M.
    • Structural Engineering and Mechanics
    • /
    • 제27권5호
    • /
    • pp.575-588
    • /
    • 2007
  • In this paper, two algorithms are presented for the optimum design of geometrically nonlinear steel space frames using tabu search. The first algorithm utilizes the features of short-term memory (tabu list) facility and aspiration criteria and the other has long-term memory (back-tracking) facility in addition to the aforementioned features. The design algorithms obtain minimum weight frames by selecting suitable sections from a standard set of steel sections such as American Institute of Steel Construction (AISC) wide-flange (W) shapes. Stress constraints of AISC Allowable stress design (ASD) specification, maximum drift (lateral displacement) and interstorey drift constraints were imposed on the frames. The algorithms were applied to the optimum design of three space frame structures. The designs obtained using the two algorithms were compared to each other. The comparisons showed that the second algorithm resulted in lighter frames.

Optimum design of braced steel frames via teaching learning based optimization

  • Artar, Musa
    • Steel and Composite Structures
    • /
    • 제22권4호
    • /
    • pp.733-744
    • /
    • 2016
  • In this study, optimum structural designs of braced (non-swaying) planar steel frames are investigated by using one of the recent meta-heuristic search techniques, teaching-learning based optimization. Optimum design problems are performed according to American Institute of Steel Construction- Allowable Stress Design (AISC-ASD) specifications. A computer program is developed in MATLAB interacting with SAP2000 OAPI (Open Application Programming Interface) to conduct optimization procedures. Optimum cross sections are selected from a specified list of 128W profiles taken from AISC. Two different braced planar frames taken from literature are carried out for stress, geometric size, displacement and inter-storey drift constraints. It is concluded that teaching-learning based optimization presents robust and applicable optimum solutions in multi-element structural problems.

Optimum design of steel bridges including corrosion effect using TLBO

  • Artar, Musa;Catar, Recep;Daloglu, Ayse T.
    • Structural Engineering and Mechanics
    • /
    • 제63권5호
    • /
    • pp.607-615
    • /
    • 2017
  • This study presents optimum design of plane steel bridges considering corrosion effect by using teaching-learning based optimization (TLBO) method. Optimum solutions of three different bridge problems are linearly carried out including and excluding corrosion effect. The member cross sections are selected from a pre-specified list of 128 W profiles taken from American Institute of Steel Construction (AISC). A computer program is coded in MATLAB to carry out optimum design interacting with SAP2000 using OAPI (Open Application Programming Interface). The stress constraints are incorporated as indicated in AISC Allowable Stress Design (ASD) specifications and also displacement constraints are applied in optimum design. The results obtained from analysis show that the corrosion effect on steel profile surfaces causes a crucial increase on the minimum steel weight of bridges. Moreover, the results show that the method proposed is applicable and robust to reach the destination even for complex problems.