• Title/Summary/Keyword: AIS data

Search Result 286, Processing Time 0.026 seconds

MOB 장치가 AIS VDL에 미치는 영향 분석

  • Kim, Byeong-Ok
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2013.10a
    • /
    • pp.173-175
    • /
    • 2013
  • 최근 AIS 기술을 적용한 MOB(Man Overboard) 장치가 개발되고 있으나 이에 대한 국제적인 기술표준 뿐만 아니라 우리나라의 기술기준도 아직까지 마련되어 있지 않다. MOB가 사용하는 주파수가 AIS 주파수와 동일하기 때문에 AIS VDL(VHF Data Link)에 미치는 영향이 파악되지 않았기 때문이다. 본 연구에서는 AIS 기술을 적용한 MOB가 AIS VDL에 미치는 영향을 분석하고 기술기준을 마련하는데 있어서 고려해야 할 사항을 제시하였다.

  • PDF

Sectorizztion effectiveness using Yagi antenna in the maritime mobile service (해상이동업무에서 야기 안테나를 사용한 섹터 수신 효과)

  • Kim, Byung-ok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.195-196
    • /
    • 2016
  • In the maritime mobile radiocommunication service, AIS(Automatic Identification System) devices are most widely using for the exchange of ship's navigational information. The AIS time slot usage increases due to increasing number of ships installed with AIS, and thus the reception rate of AIS data decrease. In order to mitigate this problem, international organizations recommend a sectorised receiving technique using directional antenna. This paper analyzed the sectorised receiving effectiveness of AIS data using Yaga antenna.

  • PDF

Validation on the algorithm of estimation of collision risk among ships based on AIS data of actual ships' collision accident (선박충돌사고 AIS 데이터 기반 선박 충돌위험도 추정 알고리즘 검증에 관한 연구)

  • Son, Nam-Sun;Kim, Sun-Young
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2010.10a
    • /
    • pp.180-181
    • /
    • 2010
  • An estimation algorithm of collision risk among multiple ships has been developed in order to reduce human error and prevent collision accidents. The algorithm is designed to calculate the collision risk among ships based on Fuzzy theory by using AIS data as traffic information. In this paper, to validate the algorithm, the AIS data of actual collision accident, which occurred between a product carrier and a cargo carrier in Busan harbor in 2009 are collected. The replay simulation is carried out on the actual AIS data and the collision risk is calculated in real time. In this paper, the features of the estimation algorithm of collision risk and the results of replay simulation based on AIS data of actual collision accident are discussed.

  • PDF

Validation on the Algorithm of Estimation of Collision Risk among Ships based on AIS Data of Actual Ships' Collision Accident (선박충돌사고의 AIS 데이터를 이용한 선박 충돌위험도 추정 알고리즘 검증에 관한 연구)

  • Son, Nam-Sun;Kim, Sun-Young
    • Journal of Navigation and Port Research
    • /
    • v.34 no.10
    • /
    • pp.727-733
    • /
    • 2010
  • An estimation algorithm of collision risk among multiple ships has been developed in order to reduce human error and prevent collision accidents. The algorithm is designed to calculate the collision risk among ships based on Fuzzy theory by using AIS data as traffic information. In this paper, to validate the algorithm, the AIS data of actual collision accident, which occurred between a product carrier and a cargo carrier in Busan harbor in 2009 are collected. The replay simulation is carried out on the actual AIS data and the collision risk is calculated in real time. In this paper, the features of the estimation algorithm of collision risk and the results of replay simulation based on AIS data of actual collision accident are discussed.

Standalone Maritime Aids-To-Navigation AIS Mobile Station

  • Lee, Chee-Cheong;Park, Soo-Hong
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.3
    • /
    • pp.297-303
    • /
    • 2009
  • Automatic Identification System (AIS) is a VHF radio broadcasting system where transmits packets of data via VHF data link. It enables vessels and coastal-based station that equipped with AIS equipment to send and receive useful information. This information can be help in situational awareness and provide a means to assist in collision avoidance. In addition, AIS can be use as Aid-To-Navigation, by providing the location and additional information on buoys and lights. Besides, it can also contain details information in meteorological status of a particular ship location. This paper presents the standalone AIS system that able to receive and report own ship location, meteorological data collection and broadcast safety related information if necessary. With the unique ship's MMSI number, all the information of that particular ship can be monitor by using AIS program written in C++ programming language.

Interpolation method for the missing AIS dynamic Data of Ship

  • Nguyen, Van-Suong;Im, Nam-Kyun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2014.10a
    • /
    • pp.114-116
    • /
    • 2014
  • The interpolation of the missing AIS dynamic data can be used for predicting the lost data of the ship's state which is able to product the valuable information for analyzing and investigating the maritime accidents. The previous research proposed some interpolating methods however there exists some problem, firstly, the interpolated parameters such as COG, SOG, HDG weren't described sufficiently and accurately as in AIS message, secondly, each method is only suitable to some kinds of given AIS data, finally at heavy wind and current area, the parameters of AIS dynamic change quickly in short time, therefore, the modelling of the variation of ship's dynamic based on the physical characteristic is very difficult, in these cases the time-series and numerical method are usually better. This research proposes the other method through numerical analysis which can be suitable for many different kinds of the lost data, parameters are interpolated sufficiently, beside that this model is appropriate to all variation in short time interval. All the given AIS dynamic are regarded as the functions to time, then curves are established for fitting all data. Experiments are carried out to evaluate the performance of this approach, the interpolation results show this approach can be applied well in practice.

  • PDF

The Interpolation Method for the missing AIS Data of Ship

  • Nguyen, Van-Suong;Im, Nam-kyun;Lee, Sang-min
    • Journal of Navigation and Port Research
    • /
    • v.39 no.5
    • /
    • pp.377-384
    • /
    • 2015
  • The interpolation of missing AIS data can be used for recovering the lost data of a ship's state which is then able to produce useful information for VTS stations or other ships. Previous research has introduced some interpolating methods however there are some problems with regard to missing AIS data. This paper proposes one new method which includes linear interpolation, cubic Hermit interpolation and an identification mechanism to overcome some of those limitations, first AIS data regarding ship position, COG, SOG and HDG is divided into separate time series, then the characteristic of the missing data is investigated into through using an identification mechanism, an appropriate interpolation is selected to fit all the time series which matches the characteristics. Numerical experiments are carried out using real AIS data to validate the algorithm of this approach and the results are compared with the previous method, after which the actual missing area is suggested to be interpolated by the proposed method. The interpolation results show this approach can be applied well in practice.

Tracking of ARPA Radar Signals Based on UK-PDAF and Fusion with AIS Data

  • Chan Woo Han;Sung Wook Lee;Eun Seok Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.38-48
    • /
    • 2023
  • To maintain the existing systems of ships and introduce autonomous operation technology, it is necessary to improve situational awareness through the sensor fusion of the automatic identification system (AIS) and automatic radar plotting aid (ARPA), which are installed sensors. This study proposes an algorithm for determining whether AIS and ARPA signals are sent to the same ship in real time. To minimize the number of errors caused by the time series and abnormal phenomena of heterogeneous signals, a tracking method based on the combination of the unscented Kalman filter and probabilistic data association filter is performed on ARPA radar signals, and a position prediction method is applied to AIS signals. Especially, the proposed algorithm determines whether the signal is for the same vessel by comparing motion-related components among data of heterogeneous signals to which the corresponding method is applied. Finally, a measurement test is conducted on a training ship. In this process, the proposed algorithm is validated using the AIS and ARPA signal data received by the voyage data recorder for the same ship. In addition, the proposed algorithm is verified by comparing the test results with those obtained from raw data. Therefore, it is recommended to use a sensor fusion algorithm that considers the characteristics of sensors to improve the situational awareness accuracy of existing ship systems.

Vessel Detection Using Satellite SAR Images and AIS Data (위성 SAR 영상과 AIS을 활용한 선박 탐지)

  • Lee, Kyung-Yup;Hong, Sang-Hoon;Yoon, Bo-Yeol;Kim, Youn-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.2
    • /
    • pp.103-112
    • /
    • 2012
  • We demonstrate the preliminary results of ship detection application using synthetic aperture radar (SAR) and automatic identification system (AIS) together. Multi-frequency and multi-temporal SAR images such as TerraSAR-X and Cosmo-SkyMed (X-band), and Radarsat-2 (C-band) are acquired over the West Sea in South Korea. In order to compare with SAR data, we also collected an AIS data. The SAR data are pre-processed considering by the characteristics of scattering mechanism as for sea surface. We proposed the "Adaptive Threshold Algorithm" for classification ship efficiently. The analyses using the combination of the SAR and AIS data with time series will be very useful to ship detection or tracing of the ship.

Operational Ship Monitoring Based on Integrated Analysis of KOMPSAT-5 SAR and AIS Data (Kompsat-5 SAR와 AIS 자료 통합분석 기반 운영레벨 선박탐지 모니터링)

  • Kim, Sang-wan;Kim, Dong-Han;Lee, Yoon-Kyung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_2
    • /
    • pp.327-338
    • /
    • 2018
  • The possibility of ship detection monitoring at operational level using KOMPSAT-5 Synthetic Aperture Radar (SAR) and Automatic Identification System (AIS) data is investigated. For the analysis, the KOMPSAT-5 SLC images, which are collected from the west coast of Shinjin port and the northern coast of Jeju port are used along with portable AIS data from near the coast. The ship detection algorithm based on HVAS (Human Visual Attention System) was applied, which has significant advantages in terms of detection speed and accuracy compared to the commonly used CFAR (Constant False Alarm Rate). As a result of the integrated analysis, the ship detection from KOMPSAT-5 and AIS were generally consistent except for small vessels. Some ships detected in KOMPSAT-5 but not in AIS are due to the data absence from AIS, while it is clearly visible in KOMPSAT-5. Meanwhile, SAR imagery also has some false alarms due to ship wakes, ghost effect, and DEM error (or satellite orbit error) during object masking in land. Improving the developed ship detection algorithm and collecting reliable AIS data will contribute for building wide integrated surveillance system of marine territory at operational level.