• Title/Summary/Keyword: AIR 모델

Search Result 2,267, Processing Time 0.03 seconds

Numerical Study on the Effects of Air Decking in Half Charge Blasting Using AUTODYN (AUTODYN을 이용한 하프장전 발파공법의 에어데크 효과에 대한 수치해석적 연구)

  • Baluch, Khaqan;Kim, Jung-Kyu;Kim, Seung-Jun;Jin, Guochen;Jung, Seung-Won;Yang, Hyung-Sik;Kim, Nam-Soo;Kim, Jong-Gwan
    • Explosives and Blasting
    • /
    • v.36 no.4
    • /
    • pp.1-8
    • /
    • 2018
  • This numerical study was intended to evaluate the applicability of the half charge blasting to mining and tunnelling. The half charge blasting is a method that two separate rounds are sequentially blasted for the rock burdens in which long blast holes have already been drilled at one operation. The aim of the method is to decrease the construction cost and period in mining and tunnelling projects as well as to increase the blasting efficiency. Several numerical analyses were conducted by using the Euler-Lagrange solver on ANSYS AUTODYN to identify the effects of the suggested method on the blasting results in underground excavations. The overall performance of the suggested method was also compared to an ordinary blasting method. The analysis model was comprised of the Eulerian parts (explosive, air, and stemming materials) and the Lagrangian parts (rock material). As a result, it was found that, owing to the air decks formed in the bottom parts of the long blast holes, the first round of the suggested method presented a higher shock pressure and particle velocities in the vicinity of the blast holes compared to the ordinary blasting method.

Optimal Mesh Size in Three-Dimensional Arbitrary Lagrangian-Eulerian Method of Free-air Explosions (3차원 Arbitrary Lagrangian-Eulerian 기법을 사용한 자유 대기 중 폭발 해석의 최적 격자망 크기 산정)

  • Yena Lee;Tae Hee Lee;Dawon Park;Youngjun Choi;Jung-Wuk Hong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.6
    • /
    • pp.355-364
    • /
    • 2023
  • The arbitrary Lagrangian-Eulerian (ALE) method has been extensively researched owing to its capability to accurately predict the propagation of blast shock waves. Although the use of the ALE method for dynamic analysis can produce unreliable results depending on the mesh size of the finite element, few studies have explored the relationship between the mesh size for the air domain and the accuracy of numerical analysis. In this study, we propose a procedure to calculate the optimal mesh size based on the mean squared error between the maximum blast pressure values obtained from numerical simulations and experiments. Furthermore, we analyze the relationship between the weight of explosive material (TNT) and the optimal mesh size of the air domain. The findings from this study can contribute to estimating the optimal mesh size in blast simulations with various explosion weights and promote the development of advanced blast numerical analysis models.

Comparison between the Road-based and the Parcel-based Address Coordinates for Urban Air Pollution Estimation - A Case Study of Yeongdeungpo-gu, Seoul, Korea - (도심대기오염추정을 위한 도로명주소좌표와 지번주소좌표의 비교 - 서울 영등포 지역의 사례연구 -)

  • Park, Jinwoo;Choi, Jinmu;Hong, Seong-Yun
    • Journal of Cadastre & Land InformatiX
    • /
    • v.46 no.2
    • /
    • pp.169-181
    • /
    • 2016
  • The address system in Korea was changed to the road-based system in 2014, but the current address coordinates are still largely based on the old, parcel-based system. Compared to the parcel-based address system that defines the center of a parcel as its coordinates, the road-based system locates the coordinates at a certain distance away from the road on which the parcel fronts. The difference in coordinates between these two systems is small, but it can be crucial for micro-level modelling. In order to assess the impact of the discrepancy between the two address systems, this study measured the degree of air pollution exposure at two different locations, the road-based address coordinates and the parcel-based address coordinates, for each of 252 buildings in Yeongdeungpo-gu, Seoul. The air pollution values were estimated using a microscopic air pollution dispersion model, CALINE4, and t-tests and F-tests were conducted to evaluate statistical significance on the observed difference. The results showed a considerable difference in the level of air pollution exposure between the two address systems, suggesting that the on-going use of the parcel-based address coordinates could cause potentially significant errors in micro-level analysis.

Evaluation of Korea Coast Guard Districts Using F-AHP & ARAS Method for Deployment Marine Air Drones (F-AHP법 및 ARAS법을 이용한 해양항공드론 배치를 위한 해양경찰서 관할구역 평가)

  • Jang, Woon-Jae
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.5
    • /
    • pp.466-473
    • /
    • 2020
  • A marine air drone is a new device that can be used to respond to and prevent marine casualties. Determining the districts where marine air drones can be deployed helps the government decision makers identify efficient policy. The aim of this study is to develop a model using the fuzzy-analytic hierarchy process (F-AHP) and additive ratio assessment (ARAS) method to evaluate appropriate districts for deploying marine air drones. To verify the applicability of the proposed model, a case study was performed with respect to the Korea coast guard (KCG) districts. Since the deployed marine air drones are characterized by a high degree of overlap between the evaluation attributes. the F-AHP is used to determine the weights of identified criteria. The results of this study, show that missing people from the shore was the most important criterion for deployment of the drone. For ranking the local districts of the KCG, the ARAS is applied in the case study with the single goal of 50% reduction in marine casualties. Consequently, the highest priority district was identified as Mokpo, followed by Incheon, Seogwipo, Taean, Wando, Yeosu, Pohang, Tongyeong, Gunsan, Bolyeong, Jeju, Buan, Donghae, Sokcho, Ulsan, Uljin, Busan, Changwon, and Pyeongtaeg.

Contaminative Influence of Beef Due to the Inhalation of Air and the Ingestion of Soil of Livestock from an Acute Release of Radioactive Materials (원자력시설의 사고시 가축의 공기 흡입과 토양 섭취가 육류의 방사능 요염에 미치는 영향)

  • 황원태;김은한;서경석;정효준;한문희
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.2 no.3
    • /
    • pp.181-188
    • /
    • 2004
  • The contaminative influence of beef due to the inhalation of air and the ingestion of soil of livestock, both of which are dealt with as minor contaminative pathways in most radioecological models but may not be neglected, was comprehensively investigated with the improvement of the Korean food chain model DYNACON. As the results, it was found that both pathways can not be neglected at all in the contamination of beef in the case of an accidental release during the non-grazing period of livestock. The ingestion of soil was more influential in the contamination of beef than the inhalation of air over most time following an release. If precipitation is encountered during an accidental release, contaminative influence due to the ingestion of soil was far greater compared with the cases of no precipitation. This fact was more distinct for a long-lived radionuclide $^{l37}Cs$ than a short-lived radionuclide $^{131}I$ (elemental iodine). Compared with the results for milk performed prior to this study, the contaminative pathways due to the inhalation of air and the ingestion of soil were more important in beef because of longer biological half-lives. On the other hand, in the case of an accidental release during the grazing period of livestock, radioactive contamination due to the ingestion of pasture was dominant irrespective of the existence of precipitation during an accidental release. It means that contaminative influence due to the inhalation of air and the ingestion of soil is negligible, like the cases of milk.

  • PDF

Removal of Volatile Organic Contaminant(toluene) from Specific Depth in Aquifer Using Selective Surfactant-Enhanced Air Sparging (계면활성제와 폭기를 이용한 대수층의 특정깊이에 존재히는 휘발성 유기오염물질 (톨루엔)의 휘발제거)

  • Song, Young-Su;Kwon, Han-Joon;Yang, Su-Kyeong;Kim, Heon-Ki
    • Economic and Environmental Geology
    • /
    • v.43 no.6
    • /
    • pp.565-571
    • /
    • 2010
  • An innovative application of surfactant-enhanced air sparging(SEAS) technique was developed in this study. Using a laboratory-scale physical model packed with water-saturated sand, air sparging was implemented to remove water-dissolved toluene that was introduced into a specific depth of the system with finite vertical width prior to sparging. An anionic surfactant(Sodium dodecylbenzene sulfonate) was introduced into the contaminated layer as in dissolved form in the toluene-contaminated solution for SEAS, whereas no surfactant was applied in the control experiment. Due to the suppressed surface tension of water in the surfactant(and toluene)-containing region, the toluene removal rate increased significantly compared to those without surfactant. More than 70% of the dissolved toluene was removed from the contaminated layer for SEAS application while less than 20% of toluene was removed for the experiment without surfactant. Air intrusion into the contaminated layer during sparging was found to be more effective than that without surfactant, enhancing air contact with toluene-contaminated water, which resulted in improved volatilization of contaminant. This new method is expected to open a new option for remediation of VOC(volatile organic compound)-contaminated aquifer.

A Numerical Study of the Effects of Land Characteristics on the Air Cooling (지표면 특성에 따른 대기 냉각 효과에 관한 수치적 연구)

  • An, Jae-Ho;Kim, Tae-Wan;Lee, Sang-Eun
    • Korean Journal of Environmental Agriculture
    • /
    • v.23 no.4
    • /
    • pp.264-271
    • /
    • 2004
  • A three-dimensional numerical mesoscale model by Pielke's estimation (University of Virginia Mesoscale Model, UVMM) was applied to investigate the effects of land characteristics including land-humidity, land-roughness and land-albedo on some micro-climatic coefficients and the air cooling capacity. The results indicated that land-characteristics exposed a significant effect on air cooling. Air cooling effects between in urban and agricultural areas were compared and the effects were much higher in agricultural area. Air cooling effects of weed species were different and when converted into economic values by diesel oil price the effects were ranged from 411 to 816 Won/plant.

Optimum Elevation Angle Control of the Receiving Antenna for the Long Distance Air-Ground Common Data Link (장거리 공중-지상 영상정보용 데이터링크의 수신 안테나 최적 고각 제어 방법)

  • Ryu, Young-jae;Ahn, Jae-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1528-1538
    • /
    • 2016
  • Common data link systems are designed to transmit the imaginary and signal intelligence data at long distance air-ground line of sight(LOS) link. In this paper, we analyze the received power variation according to the communication distance of the common data link using curved earth 2-Ray model suitable for received signal power analysis of long distance air-ground wireless channel. We propose optimal elevation angle control method of the receiving antenna to reduce a power variation caused by ground-reflected wave. Proposed method can get additional link margin compared to the conventional method without any additional hardware performance enhancement.

Numerical Analysis of Wind Driven Current and Mesoscale Air Flow in Coastal Region with Land Topography (육상지형을 고려한 연안해역에서의 취송류에 관한 수치해석)

  • Lee, Seong-Dae;Kim, In-Ho;Hong, Chang-Bae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1925-1930
    • /
    • 2006
  • A quasi depth-varying mathematical model for wind-generated circulation in coastal areas, expressed in terms of the depth-averaged horizontal velocity components and free surface elevation was validated and used to understand the diurnal circulation process. The wind velocity is considered as a dominant factor for driving the wind generated current. In this paper, three dimensional numerical experiments that included the land topography were used to investigate the mesoscale air flow over the coastal regions. The surface temperature of the inland was determined through the surface heat budget consideration with inclusion of a layer of vegetation. A series of numerical experiments were then carried out to investigate the diurnal response of the air flow and wind-generated circulation to various types of surface inhomogeneities.

  • PDF

Optimal Design of Blowing Plates to Minimize the Freezing Phenomena in the Freezer of a Side-by-side Refrigerator (양문 여닫이형 냉장고 냉동실 결빙 최소화를 위한 토출구형상 최적설계)

  • Kwak, S.M.;Lee, Y.H.;Kum, J.S.;Kim, N.S.;Kim, S.B.;Lee, Y.W.
    • Journal of Power System Engineering
    • /
    • v.7 no.2
    • /
    • pp.17-22
    • /
    • 2003
  • As side-by-side refrigerators came into existence, there has been a growing concern about the free%ins-up of the vital equipment in a walk-in freezer. Due to a bad performance, customers are experiencing too much frustration. In order to minimize the freezing phenomena, the numerical simulation has been performed on the characteristics of cold air flow in a side-by-side refrigerator. The flow field has been simulated with a standard $k-\varepsilon$ turbulent model and a SIMPLE algorithm based on the finite volume method. Through the results of the analysis of the pattern of cold air flow, finally the shape of outlet for cold air flow was modified. The present model was compared with the modified model. The latter was better than the former in minimizing the freezing phenomena.

  • PDF