• Title/Summary/Keyword: AIR 모델

Search Result 2,267, Processing Time 0.117 seconds

A CFD Study for Rocket Exhaust Flow using Single Species, Unreacted Flow Model (단일화학종 비반응 해석 모델을 사용한 로켓 연소후류 유동해석 연구)

  • Kang, Sun-Il;Huh, Hwan-Il
    • Aerospace Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.126-134
    • /
    • 2012
  • The Single Species, Unreacted Flow Model which is effectively applicable on the computational analysis of rocket exhaust flow is introduced in this paper. The basic concept of this model had been originated from chemically frozen analysis of hot air but it was complemented by compensating molecular weight and specific heat which was obtained CEA code analysis of exhaust plume. Comparing single species, unreacted model with the finite chemistry model, unreacted model can reduce calculation time to 1/5 while it makes similar simulation results.

Aircraft Landing Charge Based on Costs (비용에 근거한 공항사용료 결정에 관한 연구 -항공기 착륙료중심-)

  • Yoo, Kwang-Eui
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.17
    • /
    • pp.29-54
    • /
    • 2003
  • The objectives of this study are to develop more practical and efficient model concerned with airport charge, especially with aircraft landing charge. This study utilizes average pricing and marginal pricing theory as well as cost accounting theory. The average pricing method is useful to make total costs recovery possible in uncongested situation where the marginal costs are too low to recover the total costs of service. The utilization of cost accounting theory with marginal cost pricing theory would improve the practical applicability of the model. In addition, it is necessary to apply cost accounting information in order to estimate more exact cost for the service of landing and take-off of each aircraft type.

  • PDF

A Chemical Reactor Modeling for Prediction of NO Formation of Methane-Air Lean Premixed Combustion in Jet Stirred Reactor (제트 혼합 반응기 내 희박 예혼합 메탄-공기 연소의 NO 생성 예측을 위한 화학 반응기 모델링)

  • Lee, Bo-Rahm;Park, Jung-Kyu;Lee, Do-Yong;Lee, Min-Chul;Park, Won-Shik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.4
    • /
    • pp.365-373
    • /
    • 2010
  • A chemical reactor model (CRM) was developed for a jet stirred reactor (JSR) to predict the emission of exhaust such as NOx. In this study, a two-PSR model was chosen as the chemical reactor model for the JSR. The predictions of NO formation in lean premixed methane-air combustion in the JSR were carried out by using CHEMKIN and GRI 3.0 methane-air combustion mechanism which include the four NO formation mechanisms. The calculated results were compared with Rutar's experimental data for the validation of the model. The effects of important parameters on NO formation and the contributions of the four NO pathways were investigated. In the flame region, the major pathway is the prompt mechanism, and in the post flame region, the major pathway is the Zelodovich mechanism. Under the lean premixed condition, the N2O mechanism is the important pathway in both flame and postflame regions.