• Title/Summary/Keyword: AIR 모델

Search Result 2,267, Processing Time 0.034 seconds

Design of a Model Combustor for Studying the Combustion Characteristics of O2/H2 Flames at Supercritical Conditions (O2/H2 화염의 초임계 조건 연소 특성 연구를 위한 모델 연소기 설계)

  • AHN, YEONG JONG;KIM, YOUNG HOO;KWON, OH CHAE
    • Journal of Hydrogen and New Energy
    • /
    • v.31 no.1
    • /
    • pp.96-104
    • /
    • 2020
  • A model combustor has been designed and fabricated for studying the combustion characteristics of oxygen (O2)/hydrogen (H2) flames under supercritical conditions. The combustor is designed to allow combustion experiments up to 60 bar, the supercritical pressure condition of O2 and H2. Injectors can be replaced to study various types of flames and the combustion chamber is designed to visualize flames by installing optical windows. Through the preliminary tests, including a high-pressure (up to 60 bar) test using air and combustion tests for coaxial jet flames of liquid oxygen (LO2)/gaseous hydrogen (GH2) at elevated pressure, the reliability of the combustor has been demonstrated.

Numerical Study About the Effect of the Low Reynolds Number on the Performance in an Axial Compressor (저 레이놀즈 수가 압축기 성능에 미치는 영향에 대한 수치적 연구)

  • Choi, Min-Suk;Chung, Hee-Taeg;Oh, Seong-Hwan;Ko, Han-Young;Baek, Je-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.2
    • /
    • pp.83-91
    • /
    • 2008
  • A three-dimensional computation was conducted to understand effects of the low Reynolds number on the performance in a low-speed axial compressor at the design condition. The low Reynolds number can originates from the change of the air density because it decreases along the altitude in the troposphere. The performance of the axial compressor such as the static pressure rise was diminished by the separation on the suction surface with full span and the boundary layer on the hub, which were caused by the low Reynolds number. The total pressure loss at the low Reynolds number was found to be greater than that at the reference Reynolds number at the region from the hub to 85% span. Total pressure loss was scrutinized through three major loss categories in a subsonic axial compressor such as the profile loss, the tip leakage loss and the endwall loss using Denton#s loss model, and the effects of the low Reynolds number on the performance were analyzed in detail.

A Study on the Effect of Exhaust Manifold Configuration on Engine Performance in a 4 Cylinder 4 Cycle Gasoline Engine (4실린더 4사이클 가솔린기관에서 배기계의 형상이 기관성능에 미치는 영향에 관한 연구)

  • 정수진;김태훈;조진호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.751-767
    • /
    • 1994
  • Recent developments of S.I. engine, aiming to higher power, better fuel economy, lower air pollution and better driveability, have much focused on the importance of the role of computer simulation in engine research and development. In this point of view, improving engine performance requires finding some means to improve volumetric efficiency. Up to now there have been several attempts to optimize the intake and exhaust system of internal system of S.I. engine by computer simulation. There appear to be few studies available, however, of such simulation & experimental studies applied to the optimization of exhaust manifold configuration. In this study, gas exchange & power process of 4 cylinder S.I. Engine was studies numerically & experimentally, and governing equation of a one-dimensional unsteady compressible flow and combustion process were respectively solved by a characteristics method and 2-zone model. The aim of this study is to predict and investigate the influence of pressure wave interaction at the exhaust systems on engine performance with widely differing exhaust manifold configuration.

Performance Simulation of Turboprop Engine using SIMULINK$\circledR$ (SIMULINK$\circledR$를 이용한 터보프롭 엔진의 성능모사)

  • 공창덕;노흥석
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.2
    • /
    • pp.44-50
    • /
    • 2001
  • After modeling an aircraft turboprop engine using SIMULINK$\circledR$, performance simulation of PT6A-62 engine, which is main power plant of KT-1, was performed. For validation, performance parameters of the SIMULIINK model were compared with the simulated results by GASTURB program. It was confirm that the results by the SIMULINK model were well agreed with those by GASTURB within 1.07%, It was assumed that installation losses were bleed-air exteraction with a range from 0% to 5%, and power for accessories with a range from 0 to 20hp. In this investigation, it was found that the shafthorsepower was decreased by maxium 0.68%, but specific fuel consumption ratio was not effected nearly by these losses.

  • PDF

Designing a decision making system of inferring reasonable $O_2$Quantity needed to process wastewater via biological reaction (생물학적 하수처리에 소요되는 적정 폭기량의 판단 시스템 설계)

  • 이진락;양일화;이해영
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.6
    • /
    • pp.89-96
    • /
    • 2001
  • This paper presents a decision making technique of reasonable $O_2$quantity needed to resolve organic matter via microbe in wastewater treatment. Decision making system of inferring reasonable $O_2$quantity consists of three parts. The first part is to compute reasonable $O_2$quantity with given process data. The second part is to find output features of processed wastewater using process model when $O_2$quantity is changed to a value inferred from decision making system. The third part is to show the results of decision making system. In order to verify performance of proposed decision making system computer simulation was done with process data gathered during 40 days. Simulation result shows that $O_2$quantity can be reduced over 10% under the condition of satisfying the specifications for processed wastewater.

  • PDF

Optimum Design of an Automotive A/C Duct using by CFD (CFD를 이용한 승용차 에어컨 덕트의 최적설계)

  • Kim, T.H.;Jeong, S.J.
    • Journal of ILASS-Korea
    • /
    • v.1 no.3
    • /
    • pp.37-50
    • /
    • 1996
  • Computational fluid dynamics was used to optimize an A/C duct. Three dimensional flow analysis in an automotive A/C duct was performed computationally using various turbulence models and compared numerical predictions such as outlet flow split, surface pressure distribution along the duct to experimental data. Additionally, we studied the effect of location variation of 2nd branch on exit flow ratio and could find optimal location of 2nd branch. The design of an A/C duct was modeled and calculated to enhance the airflow distribution in each outlet using the STAR-CD computational fluid dynamics software. In results, modified $k-\varepsilon$ turbulence model allows a successful prediction of static pressure distribution particulary at around strong curvature but little improvement flow split. In the future, adoption of CFD to design an A/C duct with modified $k-\varepsilon$ model will bring benefits of producing more accurate prediction, and also give designers more detail information much more than now.

  • PDF

Sensitivity Analysis of the Atmospheric Dispersion Modeling through the Condition of Input Variable (입력변수의 조건에 따른 대기확산모델의 민감도 분석)

  • Chung Jin-Do;Kim Jang-Woo;Kim Jung-Tae
    • Journal of Environmental Science International
    • /
    • v.14 no.9
    • /
    • pp.851-860
    • /
    • 2005
  • In order to how well predict ISCST3(lndustrial Source Complex Short Term version 3) model dispersion of air pollutant at point source, sensitivity was analysed necessary parameters change. ISCST3 model is Gaussian plume model. Model calculation was performed with change of the wind speed, atmospheric stability and mixing height while the wind direction and ambient temperature are fixed. Fixed factors are wind direction as the south wind(l80") and temperature as 298 K(25 "C). Model's sensitivity is analyzed as wind speed, atmospheric stability and mixing height change. Data of stack are input by inner diameter of 2m, stack height of 30m, emission temperature of 40 "C, outlet velocity of 10m/s. On the whole, main factor which affects in atmospheric dispersion is wind speed and atmospheric stability at ISCST3 model. However it is effect of atmospheric stability rather than effect of distance downwind. Factor that exert big influence in determining point of maximum concentration is wind speed. Meanwhile, influence of mixing height is a little or almost not.

Analysis of Middle School Students' Thinking Processes in Galileo's Free Fall Thought Experiment (갈릴레오의 자유낙하 사고실험에 대한 중학생들의 사고과정 분석)

  • Jeong, Su-In;Park, Jong-Won
    • Journal of The Korean Association For Science Education
    • /
    • v.21 no.3
    • /
    • pp.566-579
    • /
    • 2001
  • The purpose of this study was to investigate students' actual thinking processes during conceptual change about free fall. To do this, middle school students were made an interview designed based on a teaching model using thought experiment. From the study, it was found that strategy for generating cognitive conflict by suggesting opposite views was not effective. However, many students changed their prior conceptions when new explanatory hypothesis, which explained why heavy object and light object fall equally, was introduced. And finally, even though students realized that the changed idea did not accord with the real world, they could easily solve that problem by observing demonstration designed to show the effect of air resistance.

  • PDF

Model analysis for production and utilization of hydrogen energy from wind power and solar cell (풍력-태양전지에 의한 수소에너지 생산과 이용 모델 분석)

  • Lee, Kee Mun;Park, Chang Kwon;Jeong, Kwi Seong;Oh, Byeong Soo
    • Journal of Hydrogen and New Energy
    • /
    • v.12 no.4
    • /
    • pp.239-246
    • /
    • 2001
  • Fossil fuel such as oil and natural gas has been used and will be no longer supplied enough to demand in the beginning of thisg century. The use of the fuel makes a lot of environmental pollution to threaten human being's health especially in big cities and produces a lot of $CO_{2}$ to make green house effect of the earth. It is the time to use clean fuel such as hydrogen to prevent the expected energy crisis and the pollution. A new engine such as fuel cell can be used instead of the conventional internal combustion engine with 2 to 3 times higher efficiency of the conventional engine. The fuel cell uses hydrogen and oxygen and produces electric energy and pure water, which is a calm engine without air pollution. In big cities the city buses and the taxies powered by hydrogen fuel cells are suggested to be operated for clean environment. The energy and cost analysis performed for hydrogen and electricity production from wind power and solar cell.

  • PDF

Discussion on the Practical Use of CFD for Grate Type Waste Incinerators (회격자식 소각로의 열유동 해석과 결과 분석에 대한 고찰)

  • Ryu C.;Choi S.
    • Journal of computational fluids engineering
    • /
    • v.7 no.3
    • /
    • pp.17-26
    • /
    • 2002
  • Computational fluid dynamic(CFD) analysis has been frequently applied to the waste incinerators to understand the flow performance for various design and operating parameters. Since the computational modeling inevitably requires many simplifications and complicated sub-models, validity of the results should be carefully evaluated. In this study, major computational modeling and procedure of usual simulation methods for the grate-type waste incinerators were assessed. Usual simulation method does not explicitly incorporate the waste combustion, simply by assuming the combustion gas properties from the waste bed which is treated as an inlet plane. However, effect of this arbitrary assumption on the overall flow pattern is not significant, since the flow pattern is dominated by strong pattern of jet flows of the secondary air. Thus, this method is valid in understanding the effect of flow-related parameters. In analyzing the results, deriving conclusive information directly from temperature and chemical species concentration should be avoided, since the model prediction for the gaseous reaction and the radiation reveals significant discrepancies against the actual phenomena. Use of quantitative measures such as residence time is very efficient in evaluating the flow performance.