• Title/Summary/Keyword: AI-based

Search Result 2,876, Processing Time 0.026 seconds

ChatGPT's Questions for Korean Engineering Education: Implications and Challenges (ChatGPT가 한국 공학교육에 던지는 질문: 그 의미와 과제)

  • Jeong, Hanbyul;Han, Kyonghee
    • Journal of Engineering Education Research
    • /
    • v.26 no.5
    • /
    • pp.17-28
    • /
    • 2023
  • Generative AI has arrived and it's here. Education, research, industry, and labor are all on edge about the changes it will bring. It is noteworthy that while there is a wide range of optimistic and pessimistic predictions about the impact of generative AI, there is more concern than hope when it comes to education. This paper focuses on the lack of discussion on the impact of AI in higher education. First, we reviewed the process of the emergence of generative AI and introduced how the impact of AI is being understood from various perspectives. Second, we classified work areas based on expertise and efficiency and analyzed the impact of AI on work in each area. Finally, the study found that the educational perception of generative AI and the way it is perceived for engineering education purposes can be very different. It also argued that there is a lack of active discussion and debate on areas that need to be specifically discussed around generative AI. This has led to a phenomenon known as professors' delayed indifference. We emphasized that it is time for a serious and realistic discussion on the connection and integration of AI and education.

Development of self-expression activity class program for elementary school students to cultivate AI literacy

  • LEE, DoeYean;KIM, Yong
    • Fourth Industrial Review
    • /
    • v.2 no.1
    • /
    • pp.9-17
    • /
    • 2022
  • Purpose -In general, elementary school is the time to take the first social step away from family relationships with parents or siblings. Recently, AI technology has been widely used in everyday life and society. The purpose of this study is to propose a program that can cultivate AI literacy and self-expression for elementary school students according to the trend of the times. Research design, data, and methodology - In this study, prior to developing a self-expression class program for cultivating AI literacy, we looked at the related literature on what AI literacy is. In addition, the digital learning program was analyzed considering that the current AI literacy is based on the cutting edge of digital technology and is located in the same area as digital literacy. Result -This study developed a curriculum for self-expression and AI literacy cultivation. The main feature of this study is that the education program of this study allows 3rd, 4th, and 5th graders of elementary school to express themselves and to express their career problems by combining culture and art with AI programs. Conclusion -Self-expression activity education for cultivating AI literacy should be oriented toward holistic education and should be education as a way to express oneself in order to improve the quality of life of learners

A Study on Human-AI Collaboration Process to Support Evidence-Based National Innovation Monitoring: Case Study on Ministry of Oceans and Fisheries (Human-AI 협력 프로세스 기반의 증거기반 국가혁신 모니터링 연구: 해양수산부 사례)

  • Jung Sun Lim;Seoung Hun Bae;Kil-Ho Ryu;Sang-Gook Kim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.2
    • /
    • pp.22-31
    • /
    • 2023
  • Governments around the world are enacting laws mandating explainable traceability when using AI(Artificial Intelligence) to solve real-world problems. HAI(Human-Centric Artificial Intelligence) is an approach that induces human decision-making through Human-AI collaboration. This research presents a case study that implements the Human-AI collaboration to achieve explainable traceability in governmental data analysis. The Human-AI collaboration explored in this study performs AI inferences for generating labels, followed by AI interpretation to make results more explainable and traceable. The study utilized an example dataset from the Ministry of Oceans and Fisheries to reproduce the Human-AI collaboration process used in actual policy-making, in which the Ministry of Science and ICT utilized R&D PIE(R&D Platform for Investment and Evaluation) to build a government investment portfolio.

QA Pair Passage RAG-based LLM Korean chatbot service (QA Pair Passage RAG 기반 LLM 한국어 챗봇 서비스)

  • Joongmin Shin;Jaewwook Lee;Kyungmin Kim;Taemin Lee;Sungmin Ahn;JeongBae Park;Heuiseok Lim
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.683-689
    • /
    • 2023
  • 자연어 처리 분야는 최근에 큰 발전을 보였으며, 특히 초대규모 언어 모델의 등장은 이 분야에 큰 영향을 미쳤다. GPT와 같은 모델은 다양한 NLP 작업에서 높은 성능을 보이고 있으며, 특히 챗봇 분야에서 중요하게 다루어지고 있다. 하지만, 이러한 모델에도 여러 한계와 문제점이 있으며, 그 중 하나는 모델이 기대하지 않은 결과를 생성하는 것이다. 이를 해결하기 위한 다양한 방법 중, Retrieval-Augmented Generation(RAG) 방법이 주목받았다. 이 논문에서는 지식베이스와의 통합을 통한 도메인 특화형 질의응답 시스템의 효율성 개선 방안과 벡터 데이터 베이스의 수정을 통한 챗봇 답변 수정 및 업데이트 방안을 제안한다. 본 논문의 주요 기여는 다음과 같다: 1) QA Pair Passage RAG을 활용한 새로운 RAG 시스템 제안 및 성능 향상 분석 2) 기존의 LLM 및 RAG 시스템의 성능 측정 및 한계점 제시 3) RDBMS 기반의 벡터 검색 및 업데이트를 활용한 챗봇 제어 방법론 제안

  • PDF

Artificial Intelligence-Based Identification of Normal Chest Radiographs: A Simulation Study in a Multicenter Health Screening Cohort

  • Hyunsuk Yoo;Eun Young Kim;Hyungjin Kim;Ye Ra Choi;Moon Young Kim;Sung Ho Hwang;Young Joong Kim;Young Jun Cho;Kwang Nam Jin
    • Korean Journal of Radiology
    • /
    • v.23 no.10
    • /
    • pp.1009-1018
    • /
    • 2022
  • Objective: This study aimed to investigate the feasibility of using artificial intelligence (AI) to identify normal chest radiography (CXR) from the worklist of radiologists in a health-screening environment. Materials and Methods: This retrospective simulation study was conducted using the CXRs of 5887 adults (mean age ± standard deviation, 55.4 ± 11.8 years; male, 4329) from three health screening centers in South Korea using a commercial AI (Lunit INSIGHT CXR3, version 3.5.8.8). Three board-certified thoracic radiologists reviewed CXR images for referable thoracic abnormalities and grouped the images into those with visible referable abnormalities (identified as abnormal by at least one reader) and those with clearly visible referable abnormalities (identified as abnormal by at least two readers). With AI-based simulated exclusion of normal CXR images, the percentages of normal images sorted and abnormal images erroneously removed were analyzed. Additionally, in a random subsample of 480 patients, the ability to identify visible referable abnormalities was compared among AI-unassisted reading (i.e., all images read by human readers without AI), AI-assisted reading (i.e., all images read by human readers with AI assistance as concurrent readers), and reading with AI triage (i.e., human reading of only those rendered abnormal by AI). Results: Of 5887 CXR images, 405 (6.9%) and 227 (3.9%) contained visible and clearly visible abnormalities, respectively. With AI-based triage, 42.9% (2354/5482) of normal CXR images were removed at the cost of erroneous removal of 3.5% (14/405) and 1.8% (4/227) of CXR images with visible and clearly visible abnormalities, respectively. In the diagnostic performance study, AI triage removed 41.6% (188/452) of normal images from the worklist without missing visible abnormalities and increased the specificity for some readers without decreasing sensitivity. Conclusion: This study suggests the feasibility of sorting and removing normal CXRs using AI with a tailored cut-off to increase efficiency and reduce the workload of radiologists.

Development of Radar-enabled AI Convergence Transportation Entities Detection System for Lv.4 Connected Autonomous Driving in Adverse Weather

  • Myoungho Oh;Mun-Yong Park;Kwang-Hyun Lim
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.190-201
    • /
    • 2023
  • Securing transportation safety infrastructure technology for Lv.4 connected autonomous driving is very important for the spread of autonomous vehicles, and the safe operation of level 4 autonomous vehicles in adverse weather has limitations due to the development of vehicle-only technology. We developed the radar-enabled AI convergence transportation entities detection system. This system is mounted on fixed and mobile supports on the road, and provides excellent autonomous driving situation recognition/determination results by converging transportation entities information collected from various monitoring sensors such as 60GHz radar and EO/IR based on artificial intelligence. By installing such a radar-enabled AI convergence transportation entities detection system on an autonomous road, it is possible to increase driving efficiency and ensure safety in adverse weather. To secure competitive technologies in the global market, the development of four key technologies such as ① AI-enabled transportation situation recognition/determination algorithm, ② 60GHz radar development technology, ③ multi-sensor data convergence technology, and ④ AI data framework technology is required.

Data Augmentation of Shelf Product for Object Recognition in O2O Stores Based on Generative AI (O2O 상점의 객체 인식을 위한 생성 AI 기반의 진열대 상품 데이터 증강)

  • Jongwook Si;Sungyoung Kim
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.77-78
    • /
    • 2024
  • 본 논문에서는 O2O 상점의 자동화에 필수적인 객체 인식 모델의 성능 향상을 목표로, 생성 AI 기술을 이용한 데이터 증강 방법을 제시한다. 제안하는 방법은 텍스트 프롬프트를 활용하여 진열대 상품 이미지를 포함한 다양한 고품질 이미지를 생성할 수 있음을 보인다. 또한, 실제에 더 가까운 상세한 이미지를 생성하기 위한 최적화된 프롬프트를 제안하고, Stable-Diffusion과 DALL-E2의 생성 결과를 통해 비교 분석한다. 이러한 접근 방법은 객체 인식 모델의 성능 향상에 영향을 미칠 것으로 기대된다.

  • PDF

A Study on the Development of AI Utilization Guide Components at a Christian University (기독교대학의 AI활용가이드 구성요소 개발 연구)

  • Sungwon Kam;Minho Kim
    • Journal of Christian Education in Korea
    • /
    • v.77
    • /
    • pp.171-201
    • /
    • 2024
  • Purpose of Research : Since ChatGPT's 2022 release, the educational sector faces mixed reactions to generative AI, sparking innovation but raising concerns about student cognition and communication. While Christian colleges employ AI reflecting their values, secular institutions stress ethical usage. This study explores ethical AI use in these settings, aiming to integrate findings into educational practices. Research content and method : Analyzing AI use and ethics guidelines from 50 domestic and international universities, differences between Christian and secular institutions were explored. Data was categorized, conceptualized via open coding, and components were identified through axial coding. The importance of components for Christian colleges' AI guides was assessed based on the initial data and previous research, leading to the development of tailored AI utilization components for Christian universities. Conclusion : Studies revealed secular institutions have six AI guide components, while Christian colleges found seven in both utilization and ethics guides, focusing on truthfulness, responsibility, and diversity. Emphasizing the need for ethical AI use in Christian colleges, the findings advocate developing AI ethics guidelines to aid marginalized groups and establish a new educational paradigm through further research.