• Title/Summary/Keyword: AI platform

Search Result 369, Processing Time 0.026 seconds

Metaverse Platform Design for Strengthening Gender Sensitivity of MZ Generation

  • Kim, Sea Woo;Na, Eun Gyung
    • International journal of advanced smart convergence
    • /
    • v.11 no.3
    • /
    • pp.79-84
    • /
    • 2022
  • Due to a series of online sex crimes cases and online class conversions caused by the spread of the coronavirus, alternatives to sex education in schools are urgently required. As a result of this study, the metaverse sex education platform was designed. Using this platform, learners are expected to cultivate correct adult awareness and digital citizenship. Within the metaverse platform, learners can participate more actively in learning. Instead of exposing one's name and face in a place dealing with sensitive gender issues, one can participate in education through his or her decorated avatar and participate in education much more actively than face-to-face education and express one's opinion through chat. In addition, education by level can be received regardless of time and place, which can have the effect of bridging the educational gap between urban and rural areas. In this paper, we propose a new sex education platform without time and space constraints by utilizing metaverse.

An analysis of OTT operator competitiveness via OTT platform business model development (OTT 플랫폼 비즈니스 모델 개발을 통한 OTT 사업자 경쟁력 분석)

  • Kim, So-Hyun;Leem, Choon-Seong
    • Journal of Digital Convergence
    • /
    • v.19 no.10
    • /
    • pp.303-317
    • /
    • 2021
  • The purpose of this study is to analyze the competitiveness of OTT operators by developing an analysis framework specialized for the OTT industry. Based on existing research on business model, platform business model, and OTT characteristics, the OTT platform business model framework was developed, and case analysis was conducted based on data from related materials, literature, and internal data to suggest the direction for domestic OTT operators. As a result of the study, domestic OTT operators should use advanced AI and big data technologies to produce original content and improve the infrastructure and service quality of the platform. This study is meaningful in that it provides an analysis framework for OTT operators to establish their own competitive strategies and suggests the direction for domestic OTT operators through case application.

Metaverse business research for revitalizing the music ecosystem in the web 3.0 era: Focusing on strategies for building music platform (웹 3.0 시대 음악 생태계 활성을 위한 메타버스 비즈니스연구: 음악 플랫폼의 발전 양상 및 구축 전략을 중심으로)

  • Jiwon Kim;Yuseon Won
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.5
    • /
    • pp.787-800
    • /
    • 2023
  • This paper is a study aimed at facilitating a comprehensive understanding of the music metaverse platform that will emerge in the era of Web 3.0 and exploring productive strategies for its construction. We examine the significance of the metaverse music platform from various perspectives and investigate the developmental process of digital music platforms from Web 1.0 to 3.0. Subsequently, assuming the emergence of metaverse platforms as a transition to Web 3.0, we align this transition with technological(VR technology, wearable devices, generative AI), cultural(digital avatars, fandom), and economic(NFT) discussions related to Web 3.0. These discussions are integrated with the developmental strategies of the metaverse music platform. Through this study, we hope to enhance the understanding of the metaverse music platform and provide insights into potential construction strategies.

Development of Big Data and AutoML Platforms for Smart Plants (스마트 플랜트를 위한 빅데이터 및 AutoML 플랫폼 개발)

  • Jin-Young Kang;Byeong-Seok Jeong
    • The Journal of Bigdata
    • /
    • v.8 no.2
    • /
    • pp.83-95
    • /
    • 2023
  • Big data analytics and AI play a critical role in the development of smart plants. This study presents a big data platform for plant data and an 'AutoML platform' for AI-based plant O&M(Operation and Maintenance). The big data platform collects, processes and stores large volumes of data generated in plants using Hadoop, Spark, and Kafka. The AutoML platform is a machine learning automation system aimed at constructing predictive models for equipment prognostics and process optimization in plants. The developed platforms configures a data pipeline considering compatibility with existing plant OISs(Operation Information Systems) and employs a web-based GUI to enhance both accessibility and convenience for users. Also, it has functions to load user-customizable modules into data processing and learning algorithms, which increases process flexibility. This paper demonstrates the operation of the platforms for a specific process of an oil company in Korea and presents an example of an effective data utilization platform for smart plants.

A Study on the Development of an Automatic Classification System for Life Safety Prevention Service Reporting Images through the Development of AI Learning Model and AI Model Serving Server (AI 학습모델 및 AI모델 서빙 서버 개발을 통한 생활안전 예방 서비스 신고 이미지 자동분류 시스템 개발에 대한 연구)

  • Young Sic Jeong;Yong-Woon Kim;Jeongil Yim
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.2
    • /
    • pp.432-438
    • /
    • 2023
  • Purpose: The purpose of this study is to enable users to conveniently report risks by automatically classifying risk categories in real time using AI for images reported in the life safety prevention service app. Method: Through a system consisting of a life safety prevention service platform, life safety prevention service app, AI model serving server and sftp server interconnected through the Internet, the reported life safety images are automatically classified in real time, and the AI model used at this time An AI learning algorithm for generation was also developed. Result: Images can be automatically classified by AI processing in real time, making it easier for reporters to report matters related to life safety.Conclusion: The AI image automatic classification system presented in this paper automatically classifies reported images in real time with a classification accuracy of over 90%, enabling reporters to easily report images related to life safety. It is necessary to develop faster and more accurate AI models and improve system processing capacity.

Analysis of Component Technology for Smart City Platform

  • Park, Chulsu;Cha, Jaesang
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.3
    • /
    • pp.143-148
    • /
    • 2019
  • In order to solve the urban problems caused by the increase of the urban population, the construction of smart city applying the latest technology is being carried out all over the world. In particular, we will create a smart city platform that utilizes data generated in the city to collect and store and analyze, thereby enhancing the city's continuous competitiveness and resilience and enhancing the quality of life of citizens. However, existing smart city platforms are not enough to construct a platform for smart city as a platform for solution elements such as IoT platform, big data platform, and AI platform. To complement this, we will reanalyze the existing overseas smart city platform and IoT platform in a comprehensive manner, combine the technical elements applied to it, and apply it to the future Korean smart city platform. This paper aims to investigate the trends of smart city platforms used in domestic and foreign countries and analyze the technology applied to smart city to study smart city platforms that solve various problems of the city such as environment, energy, safety, traffic, environment.

KSB Artificial Intelligence Platform Technology for On-site Application of Artificial Intelligence (인공지능의 현장적용을 위한 KSB 인공지능 플랫폼 기술)

  • Lee, Y.H.;Kang, H.J.;Kim, Y.M.;Kim, T.H.;Ahn, H.Y.;You, T.W.;Lee, H.S.;Lim, W.S.;Kim, H.J.;Pyo, C.S.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.2
    • /
    • pp.28-37
    • /
    • 2020
  • Recently, the focus of research interest in artificial intelligence technology has shifted from algorithm development to application domains. Industrial sectors such as smart manufacturing, transportation, and logistics venture beyond automation to pursue digitalization of sites for intelligence. For example, smart manufacturing is realized by connecting manufacturing sites, autonomous reconfiguration, and optimization of manufacturing systems according to customer requirements to respond promptly to market needs. Currently, KSB Convergence Research Department is developing BeeAI-an on-site end-to-end intelligence platform. BeeAI offers end-to-end service pipeline configuration and DevOps technologies that can produce and provide intelligence services needed on-site. We are hopeful that in future, the BeeAI technology will become the base technology at various sites that require automation and intelligence.

Service Platform Based on User Exercise Information Collection and Analysis (사용자 운동 정보 수집 및 분석 기반의 서비스 플랫폼)

  • Lee, Hyun-Sup;Kim, Jindeog
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.624-626
    • /
    • 2022
  • It is possible to manage individual exercise information using a smartphone application that may be attached to exercise equipment. We propose a service platform that provides effective exercise techniques and management information to athletes by establishing an AI module to analyze and present the current user's exercise volume and exercise intensity direction through analysis of exercise data. To this end, it can be effectively managed by establishing a system based on a cloud environment and builds a hybrid health model that utilizes air and magnetic technologies at the same time.

  • PDF

Annotation Method for Reliable Video Data (신뢰성 영상자료를 위한 어노테이션 기법)

  • Yun-Hee Kang;Taeun Kwon
    • Journal of Platform Technology
    • /
    • v.12 no.1
    • /
    • pp.77-84
    • /
    • 2024
  • With the recent increase in the use of artificial intelligence, AI TRiSM data management within organizations has become important, and thus securing data reliability has emerged as an essential requirement for data-based decision-making. Digital content is transmitted through the unreliable Internet to the cloud where the digital content storage is located, then used in various applications. When detecting anomaly of data, it is difficult to provide a function to check content modification due to its damage in digital content systems. In this paper, we design a technique to guarantee the reliability of video data by expanding the function of data annotation. The designed annotation technique constitutes a prototype based on gRPC to handle a request and a response in a webUI that generates classification label and Merkle tree of given video data.

  • PDF

RAVIP: Real-Time AI Vision Platform for Heterogeneous Multi-Channel Video Stream

  • Lee, Jeonghun;Hwang, Kwang-il
    • Journal of Information Processing Systems
    • /
    • v.17 no.2
    • /
    • pp.227-241
    • /
    • 2021
  • Object detection techniques based on deep learning such as YOLO have high detection performance and precision in a single channel video stream. In order to expand to multiple channel object detection in real-time, however, high-performance hardware is required. In this paper, we propose a novel back-end server framework, a real-time AI vision platform (RAVIP), which can extend the object detection function from single channel to simultaneous multi-channels, which can work well even in low-end server hardware. RAVIP assembles appropriate component modules from the RODEM (real-time object detection module) Base to create per-channel instances for each channel, enabling efficient parallelization of object detection instances on limited hardware resources through continuous monitoring with respect to resource utilization. Through practical experiments, RAVIP shows that it is possible to optimize CPU, GPU, and memory utilization while performing object detection service in a multi-channel situation. In addition, it has been proven that RAVIP can provide object detection services with 25 FPS for all 16 channels at the same time.