• 제목/요약/키워드: AI platform

검색결과 369건 처리시간 0.022초

웹 서비스 기반 e-비즈니스 응용 프로그램 통합 프레임워크 (A Web Services based e-Business Application Integration Framework)

  • 이성독;한동수
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제11권6호
    • /
    • pp.514-530
    • /
    • 2005
  • 본 논문은 인터넷에 연결된 여러 형태의 플랫폼 상에 장착되어 있는 다양한 응용 프로그램 통합을 지원하는 e-비즈니스 응용 프로그램 통합(eAI) 프레임워크를 제안한다. 연결된 응용 프로그램은 프레임워크를 구성하고 있는 워크플로우 시스템에 의해서 구동되고 조정되면서 특정 비즈니스 목적을 달성하게 된다. 프레임워크 구성을 위해서 5개의 하위 프레임워크 구성 모듈이 도출되었으며 도출된 각 모듈의 기능과 역할이 정의되었다. 도출된 5개의 하위 모듈은 비즈니스 프로세스 설계 툴, eAI 플랫폼, 비즈니스 프로세스 변환 모듈, UDDI 연결 모듈, 그리고 워크플로우 시스템을 포함한다. 제안된 프레임워크 환경에서 기업 내$\cdot$외부 응용 프로그램들은 방화벽에 구애되지 않고 손쉽게 통합될 수 있다. 본 논문에서는 제안된 시스템의 구현을 위한 워크플로우 시스템의 확장에 대해서 비교적 자세하게 기술하였으며, 구현된 eAI 프레임워크를 사용한 응용 프로그램 구현을 통하여 제안된 프레임워크의 유용성을 확인하였다. 완전한 기능을 갖춘 eAI 솔루션은 이 프레임워크에 추가적인 기능을 점진적으로 추가함으로써 구현 가능하다.

ETRI AI 실행전략 1: 인공지능 핵심기술 선제적 확보 (ETRI AI Strategy #1: Proactively Securing AI Core Technologies)

  • 김성민;연승준
    • 전자통신동향분석
    • /
    • 제35권7호
    • /
    • pp.3-12
    • /
    • 2020
  • In this paper, we introduce ETRI AI Strategy #1, "Proactively Securing AI Core Technologies." The first goal of this strategy is to innovate artificial intelligence (AI) service technology to overcome the current limitations of AI technologies. Even though we saw a big jump in AI technology development recently due to the rise of deep learning (DL), DL still has technical limitations and problems. This paper introduces the four major parts of the advanced AI technologies that ETRI will secure to overcome the problems of DL and harmonize AI with the human world: post DL technology, human-AI collaboration technology, intelligence for autonomous things, and big data platform technology.

Data Framework Design of EDISON 2.0 Digital Platform for Convergence Research

  • Sunggeun Han;Jaegwang Lee;Inho Jeon;Jeongcheol Lee;Hoon Choi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권8호
    • /
    • pp.2292-2313
    • /
    • 2023
  • With improving computing performance, various digital platforms are being developed to enable easily utilization of high-performance computing environments. EDISON 1.0 is an online simulation platform widely used in computational science and engineering education. As the research paradigm changes, the demand for developing the EDISON 1.0 platform centered on simulation into the EDISON 2.0 platform centered on data and artificial intelligence is growing. Herein, a data framework, a core module for data-centric research on EDISON 2.0 digital platform, is proposed. The proposed data framework provides the following three functions. First, it provides a data repository suitable for the data lifecycle to increase research reproducibility. Second, it provides a new data model that can integrate, manage, search, and utilize heterogeneous data to support a data-driven interdisciplinary convergence research environment. Finally, it provides an exploratory data analysis (EDA) service and data enrichment using an AI model, both developed to strengthen data reliability and maximize the efficiency and effectiveness of research endeavors. Using the EDISON 2.0 data framework, researchers can conduct interdisciplinary convergence research using heterogeneous data and easily perform data pre-processing through the web-based UI. Further, it presents the opportunity to leverage the derived data obtained through AI technology to gain insights and create new research topics.

ChatGPT, 대화형 인공지능 관광 검색 서비스의 행동의도에 대한 연구: 인지적 신뢰와 정서적 신뢰의 역할을 중심으로 (A Study of the Behavioral Intention on Conversational ChatGPT for Tourism Information Search Service: Focusing on the Role of Cognitive and Affective Trust)

  • 김민성;구철모
    • 경영정보학연구
    • /
    • 제26권1호
    • /
    • pp.119-149
    • /
    • 2024
  • 이 연구는 여행 정보 검색 서비스로서 ChatGPT와 같은 새로운 AI 챗봇의 신뢰 형성과 행동 의도에 미치는 선행 요소와 메커니즘을 탐구한다. 연구는 익숙함, 참신함, 개인의 혁신성, 정보의 질, 그리고 지각된 의인화 등 다양한 변수들 간의 관계를 분석하여, 이러한 요인들이 사용자의 인지적, 정서적 신뢰와 궁극적으로 정보수용의도, 지속사용의도에 미치는 영향을 규명한다. 결과적으로, 익숙함과 정보의 질은 인지적, 정서적 신뢰 모두에 영향을 미치는 반면 참신함은 인지적 신뢰에만 긍정적으로 기여했다. 더불어, 새로운 AI 챗봇 사용자의 개인적 혁신성은 익숙함과 인지적 신뢰 간의 관계를 약화시키는 한편, 챗봇의 지각된 의인화 수준은 참신함 및 익숙함과 인지적 신뢰 간의 관계를 증폭시키는 것으로 나타났다. 이러한 결과는 AI 챗봇의 디자인과 도입 시 의인화, 정보의 질 익숙함, 개인의 혁신성 등의 측면을 고려하는 중요성을 강조하며, 이를 통해 새로운 AI 챗봇의 여행 정보 검색 서비스로서 신뢰 및 행동의도 형성에 기여할 것으로 기대된다.

Design and Implementation of AI Recommendation Platform for Commercial Services

  • Jong-Eon Lee
    • International journal of advanced smart convergence
    • /
    • 제12권4호
    • /
    • pp.202-207
    • /
    • 2023
  • In this paper, we discuss the design and implementation of a recommendation platform actually built in the field. We survey deep learning-based recommendation models that are effective in reflecting individual user characteristics. The recently proposed RNN-based sequential recommendation models reflect individual user characteristics well. The recommendation platform we proposed has an architecture that can collect, store, and process big data from a company's commercial services. Our recommendation platform provides service providers with intuitive tools to evaluate and apply timely optimized recommendation models. In the model evaluation we performed, RNN-based sequential recommendation models showed high scores.

MLOps workflow language and platform for time series data anomaly detection

  • Sohn, Jung-Mo;Kim, Su-Min
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권11호
    • /
    • pp.19-27
    • /
    • 2022
  • 본 연구에서는 시계열 데이터 이상 탐지 수행을 위한 MLOps(Machine Learning Operations) 워크플로를 기술하고 관리할 수 있는 언어와 플랫폼을 제안한다. 시계열 데이터는 IoT 센서, 시스템 성능 지표, 사용자 접속량 등 많은 분야에서 수집되고 있다. 또한, 시스템 모니터링 및 이상 탐지 등 많은 응용 분야에 활용 중이다. 시계열 데이터의 예측 및 이상 탐지를 수행하기 위해서는 분석된 모델을 빠르고 유연하게 운영 환경에 적용할 수 있는 MLOps 플랫폼이 필요하다. 이에, 최근 데이터 분석에 많이 활용되고 있는 Python 기반의 AMML(AI/ML Modeling Language)을 개발하여 손쉽게 MLOps 워크플로를 구성하고 실행할 수 있도록 제안한다. 제안하는 AI MLOps 플랫폼은 AMML을 이용하여 다양한 데이터 소스(R-DB, NoSql DB, Log File 등)에서 시계열 데이터를 추출, 전처리 및 예측을 수행할 수 있다. AMML의 적용 가능성을 검증하기 위해, 변압기 오일 온도 예측 딥러닝 모델을 생성하는 워크플로를 AMML로 구성하고 학습이 정상적으로 수행됨을 확인하였다.

실 화상 기반의 지능형 G-러닝 가상 학습 플랫폼 개발 (Development of An Intelligent G-Learning Virtual Learning Platform Based on Real Video)

  • 박재연;박성준
    • 한국인터넷방송통신학회논문지
    • /
    • 제24권2호
    • /
    • pp.79-86
    • /
    • 2024
  • 본 논문에서는 기존의 내용 전달 위주의 학습 메타버스 플랫폼이 아닌 실제 수업 활동에서 이루어지는 다양한 학습 상호작용에 기반한 가상 학습 플랫폼을 제안한다. 본 연구에서는 AI와 가상환경을 융합한 학습 환경을 제공하여 실시간 AI와 대화하며 문제를 풀어가는 방식을 활용하고 있다. 또한, 수업의 몰입도를 향상하기 위해 G-러닝 기법을 적용하였다. 본 연구를 통해 개발한 VirtualEdu 플랫폼은 자기주도적 학습, 게임을 통한 흥미 유발, 그리고 PBL 수업 방식을 조합하여 효과적인 학습 경험을 제공하고 있다. 이를 기반으로 학생들의 참여도와 학습 효과를 향상 시키는 새로운 교육 방식을 제안하고 있다. 실험으로는 50명 이상의 학습자가 실시간 화상 학습 활동 기반의 다양한 학습 활동애 대해 성능 실험을 하였고, 결과로서 안정하게 원활한 수업이 진행됨을 얻을 수 있었다.

AiTES를 사용한 태양광 발전이 포함된 자가 적응적 스마트 그리드 (Self-Adaptive Smart Grid with Photovoltaics using AiTES)

  • 박성식;박용범
    • Journal of Platform Technology
    • /
    • 제6권3호
    • /
    • pp.38-46
    • /
    • 2018
  • 스마트 그리드는 전력 생산자와 소비자 간의 양방향 통신을 통해 효율적으로 전력을 생산 및 소비하기 위한 지능형 전력망이다. 신재생 에너지가 발전하면서 신재생 에너지가 스마트 그리드에서 차지하는 비율이 점점 높아지고 있다. 신재생 에너지는 발전량이 실시간으로 변하기 때문에 발전량의 예측 및 조절이 가능한 기존의 발전 방식과는 다른 문제점이 있다. 스마트 그리드에 자가 적응 프레임워크를 적용하는 것은 실시간으로 변하는 신재생 에너지의 발전량에 적응함으로써 스마트 그리드의 효율적인 운영을 가능케 할 것이다. 본 논문에서는 태양광 발전 시설이 설치된 스마트 마을을 가정하고 이에 자가 적응 프레임워크인 AiTES 를 적용 하여 자가 적응 프레임워크를 통해 스마트 그리드의 효율적인 운영이 가능함을 보였다.

Management Architecture With Multi-modal Ensemble AI Models for Worker Safety

  • Dongyeop Lee;Daesik, Lim;Jongseok Park;Soojeong Woo;Youngho Moon;Aesol Jung
    • Safety and Health at Work
    • /
    • 제15권3호
    • /
    • pp.373-378
    • /
    • 2024
  • Introduction: Following the Republic of Korea electric power industry site-specific safety management system, this paper proposes a novel safety autonomous platform (SAP) architecture that can automatically and precisely manage on-site safety through ensemble artificial intelligence (AI) models. The ensemble AI model was generated from video information and worker's biometric information as learning data and the estimation results of this model are based on standard operating procedures of the workplace and safety rules. Methods: The ensemble AI model is designed and implemented by the Hadoop ecosystem with Kafka/NiFi, Spark/Hive, HUE, and ELK (Elasticsearch, Logstash, Kibana). Results: The functional evaluation shows that the main function of this SAP architecture was operated successfully. Discussion: The proposed model is confirmed to work well with safety mobility gateways to provide some safety applications.

AiMind: AI 체험 및 피지컬컴퓨팅 교육 플랫폼 (AiMind: AI Experience and Physical Computing Education Platform)

  • 이세훈;김기태;윤재광;강도형;김영호
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제68차 하계학술대회논문집 31권2호
    • /
    • pp.395-396
    • /
    • 2023
  • 본 논문에서는 디지털 전환 시대에 모든 사람들이 인공지능(AI) 체험부터 피지컬컴퓨팅을 통해서 SW·AI 융합해 아이디어를 쉽게 구현하고 교육 받을 수 있는 플랫폼을 구현하였다. AI 체험을 위해 P5.js와 텐서플로우에 기반한 ML5.js 라이브러리를 이용해 블록 코딩을 할 수 있도록 하였다. 또한 피지컬컴퓨팅에서는 마이크로비트와 아두이노, 라즈베리파이 등을 WebUSB를 통해서 PC와 연결하고 플랫폼에서 인공지능의 다양한 서비스와 융합시킬 수 있도록 제공한다.

  • PDF