• 제목/요약/키워드: AI knowledge

검색결과 351건 처리시간 0.026초

지식 임베딩 심층학습을 이용한 단어 의미 중의성 해소 (Word Sense Disambiguation Using Knowledge Embedding)

  • 오동석;양기수;김규경;황태선;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.272-275
    • /
    • 2019
  • 단어 중의성 해소 방법은 지식 정보를 활용하여 문제를 해결하는 지식 기반 방법과 각종 기계학습 모델을 이용하여 문제를 해결하는 지도학습 방법이 있다. 지도학습 방법은 높은 성능을 보이지만 대량의 정제된 학습 데이터가 필요하다. 반대로 지식 기반 방법은 대량의 정제된 학습데이터는 필요없지만 높은 성능을 기대할수 없다. 최근에는 이러한 문제를 보완하기 위해 지식내에 있는 정보와 정제된 학습데이터를 기계학습 모델에 학습하여 단어 중의성 해소 방법을 해결하고 있다. 가장 많이 활용하고 있는 지식 정보는 상위어(Hypernym)와 하위어(Hyponym), 동의어(Synonym)가 가지는 의미설명(Gloss)정보이다. 이 정보의 표상을 기존의 문장의 표상과 같이 활용하여 중의성 단어가 가지는 의미를 파악한다. 하지만 정확한 문장의 표상을 얻기 위해서는 단어의 표상을 잘 만들어줘야 하는데 기존의 방법론들은 모두 문장내의 문맥정보만을 파악하여 표현하였기 때문에 정확한 의미를 반영하는데 한계가 있었다. 본 논문에서는 의미정보와 문맥정보를 담은 단어의 표상정보를 만들기 위해 구문정보, 의미관계 그래프정보를 GCN(Graph Convolutional Network)를 활용하여 임베딩을 표현하였고, 기존의 모델에 반영하여 문맥정보만을 활용한 단어 표상보다 높은 성능을 보였다.

  • PDF

추천 분야에서의 지식 그래프 기반 어텐션 네트워크 모델 성능 향상 기법 연구 (A Study on Augmentation Method for Improving the Performance of the Knowledge Graph Based Attention Network Model)

  • 김경태;민찬욱;김진우;안진현;전희국;임동혁
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.603-605
    • /
    • 2022
  • 추천시스템은 개개인의 성향에 따른 맞춤화 추천이 가능하기 때문에 음악, 영상, 뉴스 등 많은 분야에서 관심을 받고 있다. 일반적인 추천시스템 모델은 블랙박스 모델이기 때문에 추천 결과에 따른 원인 도출을 할 수 없다. 하지만 XAI 의 모델은 이러한 블랙박스 모델의 단점을 해결하고자 제안되었다. 그 중 KGAT 는 Attention Score 를 기반으로 추천 결과에 따른 원인을 알 수 있다. 이와 같은 AI, XAI 등의 딥 러닝 모델에서 각각의 활성화 함수는 상황에 따라 상이한 성능을 나타낸다. 이러한 이유로 인해 데이터에 맞는 활성화 함수를 적용해보는 다양한 시도가 필요하다. 따라서 본 논문은 XAI 추천시스템 모델인 KGAT 의 성능 개선을 위해 여러 활성화 함수를 적용해보고, 실험을 통해 수정한 모델의 성능이 개선됨을 보인다.

Q-러닝 기반의 선박의 최적 경로 생성 (Generation of Ship's Optimal Route based on Q-Learning)

  • 이형탁;김민규;양현
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2023년도 춘계학술대회
    • /
    • pp.160-161
    • /
    • 2023
  • 현재 선박의 항해계획은 항해사의 지식과 경험적인 방법에 의존하고 있다. 그러나 최근에는 선박 자율운항기술이 발전됨에 따라, 항해계획의 자동화 기술도 여러 가지 방법으로 연구되고 있다. 본 연구에서는 강화학습 기법 중 하나인 Q-러닝을 기반으로 선박 최적 항해 경로를 생성하고자 한다. 강화학습은 다양한 상황에 대한 경험을 학습하고, 이를 기반으로 최적의 결정을 내리는 방식으로 적용된다.

  • PDF

Stock Price Prediction and Portfolio Selection Using Artificial Intelligence

  • Sandeep Patalay;Madhusudhan Rao Bandlamudi
    • Asia pacific journal of information systems
    • /
    • 제30권1호
    • /
    • pp.31-52
    • /
    • 2020
  • Stock markets are popular investment avenues to people who plan to receive premium returns compared to other financial instruments, but they are highly volatile and risky due to the complex financial dynamics and poor understanding of the market forces involved in the price determination. A system that can forecast, predict the stock prices and automatically create a portfolio of top performing stocks is of great value to individual investors who do not have sufficient knowledge to understand the complex dynamics involved in evaluating and predicting stock prices. In this paper the authors propose a Stock prediction, Portfolio Generation and Selection model based on Machine learning algorithms, Artificial neural networks (ANNs) are used for stock price prediction, Mathematical and Statistical techniques are used for Portfolio generation and Un-Supervised Machine learning based on K-Means Clustering algorithms are used for Portfolio Evaluation and Selection which take in to account the Portfolio Return and Risk in to consideration. The model presented here is limited to predicting stock prices on a long term basis as the inputs to the model are based on fundamental attributes and intrinsic value of the stock. The results of this study are quite encouraging as the stock prediction models are able predict stock prices at least a financial quarter in advance with an accuracy of around 90 percent and the portfolio selection classifiers are giving returns in excess of average market returns.

Application of ChatGPT text extraction model in analyzing rhetorical principles of COVID-19 pandemic information on a question-and-answer community

  • Hyunwoo Moon;Beom Jun Bae;Sangwon Bae
    • International journal of advanced smart convergence
    • /
    • 제13권2호
    • /
    • pp.205-213
    • /
    • 2024
  • This study uses a large language model (LLM) to identify Aristotle's rhetorical principles (ethos, pathos, and logos) in COVID-19 information on Naver Knowledge-iN, South Korea's leading question-and-answer community. The research analyzed the differences of these rhetorical elements in the most upvoted answers with random answers. A total of 193 answer pairs were randomly selected, with 135 pairs for training and 58 for testing. These answers were then coded in line with the rhetorical principles to refine GPT 3.5-based models. The models achieved F1 scores of .88 (ethos), .81 (pathos), and .69 (logos). Subsequent analysis of 128 new answer pairs revealed that logos, particularly factual information and logical reasoning, was more frequently used in the most upvoted answers than the random answers, whereas there were no differences in ethos and pathos between the answer groups. The results suggest that health information consumers value information including logos while ethos and pathos were not associated with consumers' preference for health information. By utilizing an LLM for the analysis of persuasive content, which has been typically conducted manually with much labor and time, this study not only demonstrates the feasibility of using an LLM for latent content but also contributes to expanding the horizon in the field of AI text extraction.

Artificial Intelligence Plant Doctor: Plant Disease Diagnosis Using GPT4-vision

  • Yoeguang Hue;Jea Hyeoung Kim;Gang Lee;Byungheon Choi;Hyun Sim;Jongbum Jeon;Mun-Il Ahn;Yong Kyu Han;Ki-Tae Kim
    • 식물병연구
    • /
    • 제30권1호
    • /
    • pp.99-102
    • /
    • 2024
  • Integrated pest management is essential for controlling plant diseases that reduce crop yields. Rapid diagnosis is crucial for effective management in the event of an outbreak to identify the cause and minimize damage. Diagnosis methods range from indirect visual observation, which can be subjective and inaccurate, to machine learning and deep learning predictions that may suffer from biased data. Direct molecular-based methods, while accurate, are complex and time-consuming. However, the development of large multimodal models, like GPT-4, combines image recognition with natural language processing for more accurate diagnostic information. This study introduces GPT-4-based system for diagnosing plant diseases utilizing a detailed knowledge base with 1,420 host plants, 2,462 pathogens, and 37,467 pesticide instances from the official plant disease and pesticide registries of Korea. The AI plant doctor offers interactive advice on diagnosis, control methods, and pesticide use for diseases in Korea and is accessible at https://pdoc.scnu.ac.kr/.

A Study on Intelligent VR/AR Education Platform for Realistic Content Production

  • Hyun-Sook Lee;Jee-Uk Heu
    • Journal of Platform Technology
    • /
    • 제12권1호
    • /
    • pp.32-43
    • /
    • 2024
  • In recent years, a platform providing a Visual Programming development environment capable of 3D editing and interaction editing in an In-VR environment to quickly prototype VR/AR contents for education of VR and AR for general users and children. In the past, VR contents were mostly viewed by users. However, thanks to the rapid development of recent computing technologies, VR contents interacting with users have emerged as a device capable of tracking user behavior in a small size It was able to appear. In addition, because VR is extended to AR and MR, it can be used in all three virtual environments and requires efficient user interface(UI). In this paper, we propose UI based on eye tracking. Eye-tracking-based UI not only reduces the amount of time the user directly manipulates the controller, but also dramatically lowers the time spent on simple operations, while reducing the need for a dedicated controller by allowing multiple types of controllers to be used in combination. The proposed platform can easily create a prototype of their intended VR/AR App(or content) even for users(beginners) who do not have a certain level of knowledge and experience in 3D graphics and software coding, and share it with others. Therefore, this paper proposes a method to use VAL more effectively in a 5G environment.

  • PDF

4차 산업혁명시대 가정과교육의 역할 (The Role of Home Economics Education in the Fourth Industrial Revolution)

  • 이은희
    • 한국가정과교육학회지
    • /
    • 제31권4호
    • /
    • pp.149-161
    • /
    • 2019
  • 현재 우리는 지금까지 아무도 예측하지 못할 정도의 인공지능의 발달과 빠른 기술혁신에 따른 4차 산업혁명시대로의 변화시점에 있다. 본 연구는 '4차 산업혁명시대로의 변화에 따라 가정과교육은 어떤 역할을 수행해야 하는가?'의 문제의식에서 출발하였으며, 구체적으로 4차 산업혁명시대의 특징과 교육의 방향에 따른 가정과교육의 역할에 초점을 맞추어 연구를 진행하였다. 4차 산업혁명의 특징은 인공지능(AI), 클라우드 컴퓨팅(Cloud Computing), 사물인터넷(IoT), 빅 데이터(Big Data), O2O(Online to Offline) 등으로, 일상생활뿐만 아니라 사회체제와 과학기술, 그리고 직업의 구조에 급격한 변화를 가져올 것이다. 그 과정에서 비인간화되어가는 현상, 로봇과 인공지능의 발전에 따른 인간의 도덕성과 윤리적인 면에 문제를 줄 수 있기 때문에, 4차 산업혁명 시대 교육의 방향은 미래 공동체를 위해 함께하는 인성과 시민의식을 갖춘 미래 인재를 양성하는 방향으로 총체적인 변화가 모색되어져야 한다. 또한 초지능, 초연결 사회로의 변화를 가져올 4차 산업혁명이 교육에 주는 시사점은 인간이 인간으로서의 가치를 스스로 내면화하도록 교육의 역할이 강조되어져야 한다는 것이다. 인성교육은 교육과정의 통합 속에서 개념이 정립되고 보편타당한 내면화된 의식으로 자리 잡아야 하며 구체적인 실천적 전략들이 마련되어져야 한다. 결론적으로 4차 산업혁명시대 가정과교육의 역할은 다음과 같다. 첫째, 4차 산업혁명시대 가정과교육은 인간의 본성인 인성교육의 중추적 역할을 담당하여야 한다. 인성교육을 주도적으로 담당해야 한다는 것이다. 또한 4차 산업혁명시대 가정과교육은 인간의 다양한 삶의 본질적인 개선에 선도적 역할을 담당하여야 한다. 4차 산업혁명은 인간의 정신적, 육체적 활동뿐만 아니라, 인간의 정체성도 바뀌어 갈 것이다. 3차 산업혁명 이후의 사회에서는 산재해 있는 지식을 얼마나 신속하고 정확하게 습득할 수 있느냐가 중요했다면 4차 산업혁명의 지능정보화사회에서는 빠른 변화 속에서 인간의 본성을 지키기 위해 지식을 어떻게 활용할 것인지를 배우는 것이 요구된다. 이렇듯 4차 산업혁명은 우리 삶을 형성하는 시스템에 영향을 끼침으로써 가족과 조직, 공동체를 긍정적으로 이끌어갈 수 있는 방향성을 모색하게 되는데 가정과교육이 이러한 역할을 선도적으로 담당해야 한다.

계획생성 모듈을 갖는 멀티에이전트 기반구조의 확장방법 (A Method of Extending a Multiagent Framework with a Plan Generation Module)

  • 이광로;박상규;장명욱;민병의;최중민
    • 한국정보처리학회논문지
    • /
    • 제4권9호
    • /
    • pp.2280-2288
    • /
    • 1997
  • 에이전트는 자율성, 사회성, 반응성, 지속성을 갖는 독립된 프로그램으로 지식과 추론 능력을 바탕으로 사용자의 작업을 대신해 준다. 여러 영역들을 포함하는 복잡한 문제를 효과적으로 해결하기 위해서 멀티에이전트 기반구조에 대한 연구가 활발히 진행되어 왔다. 그러나 이런 기반구조에서도 사용자의 질의는 상당히 애매하고 그에 대한 문제 해결에 대한 절차가 바로 생성되지 못하는 문제점이 있다. 이를 위해 멀티에이전트 기반구조에 계획 생성모듈을 추가시켜 좀더 지능을 갖춘 멀티에이전트의 개발이 요구된다. 본 논문에서는 OAA (Open Agent Architecture)를 이용한 에이전트 시스템이 사용자의 의도 파악과 작업수행을 위한 절차를 생성하고, 분산되어 독립적으로 흩어져 사용되고 있는 지식처리 시스템을 통합하여 상호의 지식을 공유하면서 서로 협동 가능하도록 OAA를 이용한 에이전트 시스템에 계획생성 모듈 추가방법을 제안한다. 또한 이방법의 유용성을 검증하기 위해 여행일정 에이전트 시스템에 적용하였다. 이러한 결과로 OAA를 이용한 에이전트 시스템을 사용하는 사용자는 컴퓨터 네트워크 상에서 제공되는 서비스의 제공과 사용에 있어서 좀더 편리한 인터페이스 환경을 제공 받을 수 있게 되었다. 또한 현재 독립적으로 흩어져 사용되고 있는 지식처리 시스템인 전문가 시스템이나 계획기를 통합하여 상호의 지식을 공유하면서 서로 협동으로 일을 처리할 수 있는 환경을 제공한다.

  • PDF

부도예측모형에서 도메인 지식을 통합한 반사실적 예시 기반 설명력 증진 방법 (Domain Knowledge Incorporated Counterfactual Example-Based Explanation for Bankruptcy Prediction Model)

  • 조수현;신경식
    • 지능정보연구
    • /
    • 제28권2호
    • /
    • pp.307-332
    • /
    • 2022
  • 부도예측모형은 여러 금융기관의 신용평가모형의 지식기반(knowledge base)로 이용되고 있으며 최근 머신러닝 기법의 발전으로 이를 도입하여 고도화하려는 다양한 시도가 진행 중이다. 그러나 실제 이러한 모형이 도입되기 위해서는 모형을 이용하는 사용자와 설명제공 대상인 고객의 이해와 수용이 전제되어야 한다. 그러나 사용자에게 제공되는 설명이 현실적 타당성(feasibility)이 결여되어 있다면 모형의 신뢰성과 수용도에 부정적인 영향을 미친다. 이에 따라 본 연구는 도메인 지식을 설명 생성 알고리즘에 통합하여 현실적으로 타당한 설명을 사용자에게 제공하고자 한다. 본 연구에서는 머신러닝 기반의 부도예측 모형에 설명력을 더하는 방법으로 반사실적 예시(counterfactual example) 기반의 로컬영역에서의 설명을 제공하는 모델을 제안한다. 제안 모델은 모형에 이용된 재무변수의 특성을 설명력 생성 알고리즘에 통합하여 설명의 현실적 가능성을 확보하고 이를 통해 사용자의 이해와 수용을 도모하고자 한다. 또한 본 연구에서는 반사실적 예시기반 설명을 위해 유전알고리즘(GA)를 이용하며 다목적함수를 목적함수로 설정하여 반사실적 예시의 주요 기준이 되는 항목을 반영하고 있다. 본 연구는 대표적인 머신러닝 기법인 인공신경망을 이용해 부도예측모형을 학습시킨 뒤, 사후적 방법(post-hoc)으로 설명을 위한 알고리즘을 도입하여 기존의 모형 설명 알고리즘인 LIME과 현실적 가능성이 결여된 반사실적 예시 기반 알고리즘과 비교하였다. 더 나아가 제안방법의 금융/회계 분야의 종사자를 대상으로 서베이를 진행하여 제안 방법의 설명의 질을 정성적으로 평가하였다.