• Title/Summary/Keyword: AI image analysis

Search Result 184, Processing Time 0.03 seconds

Analysis and Forecast of Venture Capital Investment on Generative AI Startups: Focusing on the U.S. and South Korea (생성 AI 스타트업에 대한 벤처투자 분석과 예측: 미국과 한국을 중심으로)

  • Lee, Seungah;Jung, Taehyun
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.18 no.4
    • /
    • pp.21-35
    • /
    • 2023
  • Expectations surrounding generative AI technology and its profound ramifications are sweeping across various industrial domains. Given the anticipated pivotal role of the startup ecosystem in the utilization and advancement of generative AI technology, it is imperative to cultivate a deeper comprehension of the present state and distinctive attributes characterizing venture capital (VC) investments within this domain. The current investigation delves into South Korea's landscape of VC investment deals and prognosticates the projected VC investments by juxtaposing these against the United States, the frontrunner in the generative AI industry and its associated ecosystem. For analytical purposes, a compilation of 286 investment deals originating from 117 U.S. generative AI startups spanning the period from 2008 to 2023, as well as 144 investment deals from 42 South Korean generative AI startups covering the years 2011 to 2023, was amassed to construct new datasets. The outcomes of this endeavor reveal an upward trajectory in the count of VC investment deals within both the U.S. and South Korea during recent years. Predominantly, these deals have been concentrated within the early-stage investment realm. Noteworthy disparities between the two nations have also come to light. Specifically, in the U.S., in contrast to South Korea, the quantum of recent VC deals has escalated, marking an augmentation ranging from 285% to 488% in the corresponding developmental stage. While the interval between disparate investment stages demonstrated a slight elongation in South Korea relative to the U.S., this discrepancy did not achieve statistical significance. Furthermore, the proportion of VC investments channeled into generative AI enterprises, relative to the aggregate number of deals, exhibited a higher quotient in South Korea compared to the U.S. Upon a comprehensive sectoral breakdown of generative AI, it was discerned that within the U.S., 59.2% of total deals were concentrated in the text and model sectors, whereas in South Korea, 61.9% of deals centered around the video, image, and chat sectors. Through forecasting, the anticipated VC investments in South Korea from 2023 to 2029 were derived via four distinct models, culminating in an estimated average requirement of 3.4 trillion Korean won (ranging from at least 2.408 trillion won to a maximum of 5.919 trillion won). This research bears pragmatic significance as it methodically dissects VC investments within the generative AI domain across both the U.S. and South Korea, culminating in the presentation of an estimated VC investment projection for the latter. Furthermore, its academic significance lies in laying the groundwork for prospective scholarly inquiries by dissecting the current landscape of generative AI VC investments, a sphere that has hitherto remained void of rigorous academic investigation supported by empirical data. Additionally, the study introduces two innovative methodologies for the prediction of VC investment sums. Upon broader integration, application, and refinement of these methodologies within diverse academic explorations, they stand poised to enhance the prognosticative capacity pertaining to VC investment costs.

  • PDF

The Effect of Local Foods on Tourists' Recommendations and Revisit Intentions: The Case in Ho Chi Minh City, Vietnam

  • NGUYEN, Ha Minh;DANG, Linh Ai Thi;NGO, Trung Thanh
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.6 no.3
    • /
    • pp.215-223
    • /
    • 2019
  • The study aims to investigate the recommendation and revisit intentions of foreign tourists in Ho Chi Minh city, Vietnam through their satisfaction with local foods. The study proposed the group of five attributes for food image: taste, health concern, price, serving style, vendor/ restaurant staffs. The relationship between these attributes of food image and food satisfaction, as well as the one between food satisfaction and behavioral intentions were investigated. To ensure a high ratio of answers, a face-to-face survey was conducted in famous places at Ho Chi Minh city. Data with 210 foreign tourists. The study uses the methods of descriptive statistics, EFA, Cronbach Alpha and regression. The results showed that Five attributes of food image were chosen for the research, being taste, health concern, price, serving style and vendors/ restaurant staffs. All of these attributes showed a positive relationship with satisfaction. Among five factors, taste had the most impact on food satisfaction. Through the analysis of several attributes of food images, this study provides managerial implications for tourism marketers in researching the positive influence of food image on tourists' satisfaction which leads to their positive word-of-mouth and return to the tourism place.

A Case Study of Artificial Intelligence Education Course for Graduate School of Education (교육대학원에서의 인공지능 교과목 운영 사례)

  • Han, Kyujung
    • Journal of The Korean Association of Information Education
    • /
    • v.25 no.5
    • /
    • pp.673-681
    • /
    • 2021
  • This study is a case study of artificial intelligence education subjects in the graduate school of education. The main educational contents consisted of understanding and practice of machine learning, data analysis, actual artificial intelligence using Entries, artificial intelligence and physical computing. As a result of the survey on the educational effect after the application of the curriculum, it was found that the students preferred the use of the Entry AI block and the use of the Blacksmith board as a physical computing tool as the priority applied to the elementary education field. In addition, the data analysis area is effective in linking math data and graph education. As a physical computing tool, Husky Lens is useful for scalability by using image processing functions for self-driving car maker education. Suggestions for desirable AI education include training courses by level and reinforcement of data collection and analysis education.

A Case Study of Artificial Intelligence Education for Graduate School of Education (교육 대학원에서의 인공지능 교육 사례)

  • Han, Kyujung
    • 한국정보교육학회:학술대회논문집
    • /
    • 2021.08a
    • /
    • pp.401-409
    • /
    • 2021
  • This study is a case study of artificial intelligence education subjects in the graduate school of education. The main educational contents consisted of understanding and practice of machine learning, data analysis, actual artificial intelligence using Entries, artificial intelligence and physical computing. As a result of the survey on the educational effect after the application of the curriculum, it was found that the students preferred the use of the Entry AI block and the use of the Blacksmith board as a physical computing tool as the priority applied to the elementary education field. In addition, the data analysis area is effective in linking math data and graph education. As a physical computing tool, Husky Lens is useful for scalability by using image processing functions for self-driving car maker education. Suggestions for desirable AI education include training courses by level and reinforcement of data collection and analysis education.

  • PDF

Proposal of AI-based Digital Forensic Evidence Collecting System

  • Jang, Eun-Jin;Shin, Seung-Jung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.3
    • /
    • pp.124-129
    • /
    • 2021
  • As the 4th industrial era is in full swing, the public's interest in related technologies such as artificial intelligence, big data, and block chain is increasing. As artificial intelligence technology is used in various industrial fields, the need for research methods incorporating artificial intelligence technology in related fields is also increasing. Evidence collection among digital forensic investigation techniques is a very important procedure in the investigation process that needs to prove a specific person's suspicions. However, there may be cases in which evidence is damaged due to intentional damage to evidence or other physical reasons, and there is a limit to the collection of evidence in this situation. Therefore, this paper we intends to propose an artificial intelligence-based evidence collection system that analyzes numerous image files reported by citizens in real time to visually check the location, user information, and shooting time of the image files. When this system is applied, it is expected that the evidence expected data collected in real time can be actually used as evidence, and it is also expected that the risk area analysis will be possible through big data analysis.

Real-time Abnormal Behavior Analysis System Based on Pedestrian Detection and Tracking (보행자의 검출 및 추적을 기반으로 한 실시간 이상행위 분석 시스템)

  • Kim, Dohun;Park, Sanghyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.25-27
    • /
    • 2021
  • With the recent development of deep learning technology, computer vision-based AI technologies have been studied to analyze the abnormal behavior of objects in image information acquired through CCTV cameras. There are many cases where surveillance cameras are installed in dangerous areas or security areas for crime prevention and surveillance. For this reason, companies are conducting studies to determine major situations such as intrusion, roaming, falls, and assault in the surveillance camera environment. In this paper, we propose a real-time abnormal behavior analysis algorithm using object detection and tracking method.

  • PDF

Automated Clothing Analysis System through Image Analysis (이미지 분석을 통한 자동화 의류 분석 시스템)

  • Choi, Moon-hyuk;Lee, Seok-jun;Lee, Hak-jae;Kim, So-yeong;Moon, Il-young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.313-315
    • /
    • 2019
  • Although Korea's fashion market has negative growth, it has been growing again since 2018. This phenomenon means that people are becoming more interested in fashion. As interest in fashion grows, people visit various community sites for reference to find a suitable coordination for themselves. Most community sites, however, are manually categorizing each garment. Not only do these tasks take a lot of time, but they also make it difficult to search for multiple clothing at the same time. In other words, I can't choose what I want at the same time, and if I choose what I want, I have to look at what the model is wearing and refer to it. The problem with this may not help because the coordination in which the model provided is worn is more likely to be the one that the user does not want. In this paper, when the image is uploaded to improve the problem, the clothing is analyzed with AI analysis model and automatically classified and stored. Therefore, not only can you search for one clothes in the existing way, but you can also search for multiple clothes at the same time. The service is expected to allow more people to easily find and refer to the code for themselves.

  • PDF

Attention-Based Heart Rate Estimation using MobilenetV3

  • Yeo-Chan Yoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.12
    • /
    • pp.1-7
    • /
    • 2023
  • The advent of deep learning technologies has led to the development of various medical applications, making healthcare services more convenient and effective. Among these applications, heart rate estimation is considered a vital method for assessing an individual's health. Traditional methods, such as photoplethysmography through smart watches, have been widely used but are invasive and require additional hardware. Recent advancements allow for contactless heart rate estimation through facial image analysis, providing a more hygienic and convenient approach. In this paper, we propose a lightweight methodology capable of accurately estimating heart rate in mobile environments, using a specialized 2-channel network structure based on 2D convolution. Our method considers both subtle facial movements and color changes resulting from blood flow and muscle contractions. The approach comprises two major components: an Encoder for analyzing image features and a regression layer for evaluating Blood Volume Pulse. By incorporating both features simultaneously our methodology delivers more accurate results even in computing environments with limited resources. The proposed approach is expected to offer a more efficient way to monitor heart rate without invasive technology, particularly well-suited for mobile devices.

Performance Improvement Analysis of Building Extraction Deep Learning Model Based on UNet Using Transfer Learning at Different Learning Rates (전이학습을 이용한 UNet 기반 건물 추출 딥러닝 모델의 학습률에 따른 성능 향상 분석)

  • Chul-Soo Ye;Young-Man Ahn;Tae-Woong Baek;Kyung-Tae Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_4
    • /
    • pp.1111-1123
    • /
    • 2023
  • In recent times, semantic image segmentation methods using deep learning models have been widely used for monitoring changes in surface attributes using remote sensing imagery. To enhance the performance of various UNet-based deep learning models, including the prominent UNet model, it is imperative to have a sufficiently large training dataset. However, enlarging the training dataset not only escalates the hardware requirements for processing but also significantly increases the time required for training. To address these issues, transfer learning is used as an effective approach, enabling performance improvement of models even in the absence of massive training datasets. In this paper we present three transfer learning models, UNet-ResNet50, UNet-VGG19, and CBAM-DRUNet-VGG19, which are combined with the representative pretrained models of VGG19 model and ResNet50 model. We applied these models to building extraction tasks and analyzed the accuracy improvements resulting from the application of transfer learning. Considering the substantial impact of learning rate on the performance of deep learning models, we also analyzed performance variations of each model based on different learning rate settings. We employed three datasets, namely Kompsat-3A dataset, WHU dataset, and INRIA dataset for evaluating the performance of building extraction results. The average accuracy improvements for the three dataset types, in comparison to the UNet model, were 5.1% for the UNet-ResNet50 model, while both UNet-VGG19 and CBAM-DRUNet-VGG19 models achieved a 7.2% improvement.

Development of online drone control management information platform (온라인 드론방제 관리 정보 플랫폼 개발)

  • Lim, Jin-Taek;Lee, Sang-Beom
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.22 no.4
    • /
    • pp.193-198
    • /
    • 2021
  • Recently, interests in the 4th industry have increased the level of demand for pest control by farmers in the field of rice farming, and the interests and use of agricultural pest control drones. Therefore, the diversification of agricultural control drones that spray high-concentration pesticides and the increase of agricultural exterminators due to the acquisition of national drone certifications are rapidly developing the agricultural sector in the drone industry. In addition, as detailed projects, an effective platform is required to construct large-scale big data due to pesticide management, exterminator management, precise spraying, pest control work volume classification, settlement, soil management, prediction and monitoring of damages by pests, etc. and to process the data. However, studies in South Korea and other countries on development of models and programs to integrate and process the big data such as data analysis algorithms, image analysis algorithms, growth management algorithms, AI algorithms, etc. are insufficient. This paper proposed an online drone pest control management information platform to meet the needs of managers and farmers in the agricultural field and to realize precise AI pest control based on the agricultural drone pest control processor using drones and presented foundation for development of a comprehensive management system through empirical experiments.