Kim, Hyun-Woo;Byun, Sung-Ho;Park, Hui-Jung;Lee, Seung-Hwan;Jung, Yoo-Suk;Cho, We-Duke
Journal of the Institute of Electronics Engineers of Korea CI
/
v.46
no.2
/
pp.27-35
/
2009
A paradigm of medical industry is changing quickly to u-healthcare according to entry toward an aging society and improvement of quality of life(QoL). The change toward u-healthcare is meaningful since meaning of healthcare is redefined by prevention and management instead of medical service such as diagnosis of disease and treatment. However, the interest about u-healthcare is only concentrated to derivation of new healthcare service, development of medical measurement appliances(Sensors), and integration and standardization of medical information. Therefore, in this paper, the main ai of this study is trying to realize and implement u-healthcare technology through primary philosophies of ubiquitous composition such as Disappear Computing, Invisible Computing, and Calm Computing and development of user-centered technology.
Although a universally accepted definition of artificial intelligence (AI) remains elusive, the terminology has gained widespread familiarity owing to its pervasive integration across diverse domains in our daily lives. The application of AI in healthcare, notably in radiographic imaging, is no longer a matter of science fiction but a reality. Consequently, AI education has emerged as an indispensable requirement for radiological technologists responsible for the field of radiology. This paper underscores this imperative and advocates for the incorporation of AI education, using the Orange platform in university radiology department as part of the solution. Furthermore, this paper presents a case study featuring machine learning analysis using structured data on exposure doses for radiation related workers and unstructured data consisting of X-ray data encompassing 69 COVID-19-infected cases and 25 individuals with normal findings. The emphasized importance of AI education for radiology professionals in this research is expected to contribute to the job stability of radiologic practitioners in the future.
비대면 진료 서비스의 필요성은 금년도 의사 파업과 코로나19 재확산으로 인해 더욱 부각되었다. 본 논문에서는 열화상 카메라로 수집한 데이터를 AI 기반 알고리즘으로 보정하였으며, P2P 통신 프로토콜인 WebRTC 기술을 적용하여 환자와 의료진 간 원활한 소통을 지원하였다. 아울러, 다양한 환경에서 안정적으로 활용 가능한 클라우드 기반 시스템을 구현함으로써 비대면 진료의 효율성을 극대화하였다.
This paper elucidates the novel direction of food research in the era of the 4th Industrial Revolution characterized by personalized approaches. Since conventional approaches for identifying novel food materials for health benefits are expensive and time-consuming, there is a need to shift towards AI-based approaches which offer more efficient and cost-effective methods, thus accelerating progress in the field of food science. However, relevant research papers in this field present several challenges such as regional and ethnic differences and lack of standardized data. To tackle this problem, our study proposes to address the issues by acquiring and normalizing food and biological big data. In addition, the paper demonstrates the association between heath status and biological big data such as metabolome, epigenome, and microbiome for personalized healthcare. Through the integration of food-health-bio data with AI technologies, we propose solutions for personalized healthcare that are both effective and validated.
The medical industry is rapidly evolving into a combination of artificial intelligence (AI) and ICT technology, such as mobile health, wireless medical, telemedicine and precision medical care. Medical artificial intelligence can be diagnosed and treated, and autonomous surgical robots can be operated. For smart medical services, data such as medical information and personal medical information are needed. AI is being developed to integrate with companies such as Google, Facebook, IBM and others in the health care field. Telemedicine services are also becoming available. However, security issues of medical information for smart medical industry are becoming important. It can have a devastating impact on life through hacking of medical devices through vulnerable areas. Research on medical information is proceeding on the necessity of privacy and privacy protection. However, there is a lack of research on the practical measures for protecting medical information and the seriousness of security threats. Therefore, in this study, we want to confirm the research trend by collecting data related to medical information in recent 5 years. In this study, smart medical related papers from 2014 to 2018 were collected using smart medical topics, and the medical information papers were rearranged based on this. Research trend analysis uses topic modeling technique for topic information. The result constructs topic network based on relation of topics and grasps main trend through topic.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.18
no.10
/
pp.2857-2871
/
2024
The research studied college students who are potential telemedicine users but have been relatively under-researched. Considering the characteristics of telemedicine technology and traditional medical services, we developed a research model that used UTAUT and the Behavioral Model of Health Service Use as a theoretical framework and added trust and privacy concerns that reflect the unique characteristics of telemedicine. To examine the research model, we conducted a survey, and the respondents were recruited from the online community for college students. The survey questionnaire included performance expectancy (usefulness, convenience, cost-saving), effort expectancy, social influence, trust, privacy concerns, health status, health anxiety, and demographic information. 166 data were collected, and we used SPSS Statistics and SmartPLS to analyze the measurement and structural models. Determinants of telemedicine acceptance were analyzed as usefulness, convenience, cost-saving, social influence, and trust. In addition, we conducted a multi-group analysis by gender and found that social influence had a stronger effect on female students' intention to accept telemedicine. Based on the results, this study investigates college students' motivations and personal characteristics affecting telemedicine acceptance and the mechanisms involved in how these factors lead to stronger acceptance intention.
Chang-Hwa Han;Young-Hwang Jeon;Jae-Bok Han;Jong-Nam Song
Journal of the Korean Society of Radiology
/
v.17
no.6
/
pp.939-945
/
2023
This study analyzes the 'performance efficiency' of AI-based reading assistance systems in the field of radiology by measuring their 'time behavior' properties. Due to the increase in medical images and the limited number of radiologists, the adoption of AI-based solutions is escalating, stimulating a multitude of studies in this area. Contrary to the majority of past research which centered on AI's diagnostic precision, this study underlines the significance of time behavior. Using 50 chest X-ray PA images, the system processed images in an average of 15.24 seconds, demonstrating high consistency and reliability, which is on par with leading global AI platforms, suggesting the potential for significant improvements in radiology workflow efficiency. We expect AI technology to play a large role in the field of radiology and help improve overall healthcare quality and efficiency.
Yu Seong Park;Kyeong Heon Lee;Hye In Jeong;Kyeong Han Kim
The Journal of Korean Medicine
/
v.44
no.4
/
pp.72-86
/
2023
Objectives: The medical field is rapidly evolving with AI and digital technologies like AI-based X-ray analysis and digital therapeutics gaining approval. Telemedicine is becoming prominent, and medical schools are adapting by integrating AI education. Pusan National University leads a talent training project for AI in health. Korean Medicine is incorporating AI with diagnostic systems and chatbots. However, there's a lack of research on education awareness in Korean Medicine Colleges. The study aims to assess opinions on integrating AI, digital therapeutics, and DNA test into the Korean medicine college curriculum for improved education. Methods: We selected appropriate four specific areas: artificial intelligence in medicine, digital therapeutics, DNA test, and telemedicine. The questionnaire developed for this study underwent expert evaluation and was subsequently administered to registered KMDs of the Association of Korean Medicine, as well as students from 12 Korean Medicine universities. The survey was designed to analyze the awareness and perceived importance of the 4 areas. Results: Both KMDs and Korean medicine students exhibited comparable awareness levels across the four objectives. Notably, both groups identified a high educational necessity and importance of artificial intelligence in medicine for clinical settings. Statistically significant differences were observed between KMDs and students in their perspectives on the importance of telemedicine and DNA test in the Korean medicine field, the educational necessity of DNA test within Korean medicine universities, and the need for comprehension of regulations related to digital therapeutics. Conclusion: The survey of Korean medicine professionals and students underscores a strong understanding of key areas such as Telemedicine, medical AI, DNA test, and digital therapeutics. Medical AI is identified as crucial for future education. There's a consensus on the need for curriculum changes in Korean medicine schools, particularly in adapting to evolving healthcare trends. The focus should be on practical clinical application, with a call for additional research to better integrate student and practitioner perspectives in future curriculum reform discussions.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.15
no.3
/
pp.974-992
/
2021
Recently, the healthcare field has undergone rapid changes owing to the accumulation of health big data and the development of machine learning. Data mining research in the field of healthcare has different characteristics from those of other data analyses, such as the structural complexity of the medical data, requirement for medical expertise, and security of personal medical information. Various methods have been implemented to address these issues, including the machine learning model and cloud platform. However, the machine learning model presents the problem of opaque result interpretation, and the cloud platform requires more in-depth research on security and efficiency. To address these issues, this paper presents a recent technology for Internet-of-Things-based (IoT-based) health big data processing. We present a cloud-based IoT health platform and health big data processing technology that reduces the medical data management costs and enhances safety. We also present a data mining technology for health-risk prediction, which is the core of healthcare. Finally, we propose a study using explainable artificial intelligence that enhances the reliability and transparency of the decision-making system, which is called the black box model owing to its lack of transparency.
Ibrahim Alrashide;Hussain Alkhalifah;Abdul-Aziz Al-Momen;Ibrahim Alali;Ghazy Alshaikh;Atta-ur Rahman;Ashraf Saadeldeen;Khalid Aloup
International Journal of Computer Science & Network Security
/
v.23
no.12
/
pp.225-234
/
2023
In this era of information and communication technology (ICT), tremendous improvements have been witnessed in our daily lives. The impact of these technologies is subjective and negative or positive. For instance, ICT has brought a lot of ease and versatility in our lifestyles, on the other hand, its excessive use brings around issues related to physical and mental health etc. In this study, we are bridging these both aspects by proposing the idea of AI based mental healthcare (AIMS). In this regard, we aim to provide a platform where the patient can register to the system and take consultancy by providing their assessment by means of a chatbot. The chatbot will send the gathered information to the machine learning block. The machine learning model is already trained and predicts whether the patient needs a treatment by classifying him/her based on the assessment. This information is provided to the mental health practitioner (doctor, psychologist, psychiatrist, or therapist) as clinical decision support. Eventually, the practitioner will provide his/her suggestions to the patient via the proposed system. Additionally, the proposed system prioritizes care, support, privacy, and patient autonomy, all while using a friendly chatbot interface. By using technology like natural language processing and machine learning, the system can predict a patient's condition and recommend the right professional for further help, including in-person appointments if necessary. This not only raises awareness about mental health but also makes it easier for patients to start therapy.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.