• 제목/요약/키워드: AI digital textbooks

검색결과 7건 처리시간 0.017초

수학 AI 디지털교과서의 도입: 초등학교 교사가 바라본 인식, 요구사항, 그리고 도전 (Introduction of AI digital textbooks in mathematics: Elementary school teachers' perceptions, needs, and challenges)

  • 김소민;이기마;김희정
    • 한국수학교육학회지시리즈C:초등수학교육
    • /
    • 제27권3호
    • /
    • pp.199-226
    • /
    • 2024
  • 인공지능(AI)과 디지털 기술의 도입 등과 같은 디지털 기반 변화의 시대를 맞아, 2025년에는 수학, 영어, 정보 교과에 AI 디지털교과서를 단계적으로 도입하는 교육혁신이 추진되고 있다. 본 연구는 2023년 11월 전국 132명의 초등학교 교사를 대상으로 실시한 설문조사를 통해 교사들의 수학 AI 디지털교과서에 대한 이해도, 핵심 기술의 필요성, 수업 활용에 대한 인식, 그리고 AI 디지털교과서의 학교 현장에의 안착을 위한 요구사항을 조사하였다. 분석 결과, 대다수 교사들은 수학 AI 디지털교과서의 도입과 필요성에 대해 낮은 인식을 보였지만, 일부 교사들은 개인별 맞춤형 학습 및 효과적인 교수·학습 지원 가능성을 인식하고 있었다. 또한, 교사들은 AI 디지털교과서의 학습 진단과 교사 재구성 기능의 필요성을 높게 평가했으며, 수업에서의 유용성을 긍정적으로 평가했지만, AI 디지털교과서의 도입으로 인해 교실에서의 상호작용성은 저하시킬 것이라고 우려했다. 이는 AI 디지털교과서의 성공적 도입 및 활용을 위해 교사연수 및 정보 제공을 통한 인식 변화의 필요성을 시사하며, 구체적이고 실용적인 활용 방안 제공, 디지털 과잉 사용 및 의존에 대한 대안 모색, 핵심 기술의 지속적 개발 등, 이와 관련한 연구의 지속적인 필요성을 제언한다.

개별 맞춤형 학습을 위한 인공지능(AI) 기반 수학 디지털교과서의 학습자 데이터 구축 모델 (A Model for Constructing Learner Data in AI-based Mathematical Digital Textbooks for Individual Customized Learning)

  • 이화영
    • 한국수학교육학회지시리즈C:초등수학교육
    • /
    • 제26권4호
    • /
    • pp.333-348
    • /
    • 2023
  • 인공지능 기반의 수학 디지털교과서의 가장 핵심적인 기능으로 여겨지는 개별 맞춤형 교수·학습이 실현되기 위해서는 개별 학생의 여러 가지 특성 요인에 대한 명확한 분석과 진단이 가장 관건이다. 본 연구에서는 수학 AI 디지털교과서에서 개별 맞춤형 학습 진단을 위한 분석 요인과 도구, 데이터 수집·분석을 위한 구축 모델을 도출하였다. 이를 위하여 최근 교육부의 AI 디지털교과서 적용 계획에 따른 수학 AI 디지털교과서에 대한 요구, 개별화 맞춤형 학습과 이를 위한 데이터에 대한 선행 연구, 수학 디지털플랫폼에서 학습자 분석에 대한 요인 등이 검토되었다. 연구 결과, 연구자는 학생 개인별로 수집해야 할 데이터로 학습 분석을 위한 요인으로 학습 준비도, 과정 및 수행도, 성취도, 취약점, 성향 분석을 위한 요인으로 학습 지속 시간, 문제해결에 걸린 시간, 집중도, 수학학습 습관, 정서 분석을 위한 요인으로 자신감, 흥미, 불안, 학습의욕, 가치 인식, 태도 분석을 위한 요인으로 자기 관리, 학습 전략으로 정리하였다. 또한, 이러한 요인에 대한 데이터 수집 도구로, 문제에 대한 정오 데이터, 학습 진도율, 학생 활동에 대한 화면 녹화 자료, 이벤트 데이터, 시선 추적 장치, 자기 응답 설문 등을 제안하였다. 최종적으로 이러한 요인들을 학습 전, 중, 후로 시계열화한 데이터 수집 모델이 제안되었다.

고등학교 수학 교과서의 공학 도구 활용 현황 분석 (An analysis of the use of technology tools in high school mathematics textbooks based )

  • 오세준
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제38권2호
    • /
    • pp.263-286
    • /
    • 2024
  • 인공지능 디지털 교과서 도입에 따라 수학 교육에서 공학 도구의 활용에 대한 관심이 높아지고 있다. 공학 도구는 수학적 개념을 시각화하고, 실험과 탐구를 통해 수학적 원리를 발견할 수 있는 장점이 있다. 이미 우리나라 2015 개정 수학과 교육과정에서도 공학 도구의 활용을 언급하고 있으며, 이에 따라 수학 교과서에는 다양한 공학 도구를 활용한 교수·학습 활동이 제시되고 있다. 그러나 고등학교 교과서에 제시된 공학 도구의 유형과 활용 방식에 대한 체계적인 분석은 아직 부족한 실정이다. 이에 본 연구에서는 2015 개정 교육과정에 따른 고등학교 수학 교과서에 제시된 공학 도구의 활용 현황을 분석하였다. 이를 위해 수학 교과서에 제시된 공학 도구의 유형을 범주화하고, 각 범주별 활용 비율을 조사하였다. 또한 교과목별, 내용 영역별로 공학 도구의 활용 양상을 분석하고, 교수·학습 활동 형태에 따른 공학 도구의 활용 비율을 살펴보았다. 연구 결과, 공학 도구는 교과목과 내용 영역에 따라 다양한 유형과 비율로 활용되고 있었다. 특히, 기호-조작 그래프 작성 소프트웨어 범주의 공학 도구가 전체 활용 사례의 58%를 차지하여 가장 높은 비중을 나타냈다. 교과목별로는 해석 영역을 다루는 과목에서 기호-조작 그래프 작성 소프트웨어의 활용이 두드러졌으며, 기하 영역에서는 동적 기하 소프트웨어의 활용이 상대적으로 높게 나타났다. 교수·학습 활동 형태 측면에서는 보조도구형(49%)과 의도된 탐구유도형(37%)의 활용 비율이 높았다. 본 연구의 결과는 수학 교과서에서 공학 도구가 다양한 역할을 하고 있음을 보여주며, 향후 공학 도구를 활용한 수학 교수·학습 방법을 개선하는 데 유용한 시사점을 제공할 수 있을 것이다.

Design and Implementation of Scent-Supported Educational Content using Arduino

  • Hye-kyung Kwon;Heesun Kim
    • International journal of advanced smart convergence
    • /
    • 제12권4호
    • /
    • pp.260-267
    • /
    • 2023
  • Due to the development of science and technology in the 4th Industrial Revolution, a variety of content is being developed and utilized through educational courses linked to digital textbooks. Students use smart devices to engage in realistic virtual learning experiences, interacting with the content in digital textbooks. However, while many realistic contents offer visual and auditory effects like 3D VR, AR, and holograms, olfactory content that evokes actual sensations has not yet been introduced. Therefore, in this paper, we designed and implemented 4D educational content by adding the sense of smell to existing content. This implemented content was tested in classrooms through a curriculum-based evaluation. Classes taught with olfactory-enhanced content showed a higher percentage of correct answers compared to those using traditional audio-visual materials, indicating improved understanding.

교육과정과 연계된 초등학교 캠프형 SW·AI교육 콘텐츠 개발에 관한 연구 (A Study on the development of elementary school SW·AI educational contents linked to the curriculum(camp type))

  • 변영신;한정수
    • 사물인터넷융복합논문지
    • /
    • 제8권6호
    • /
    • pp.49-54
    • /
    • 2022
  • 코로나 이후 급격한 현대사회의 변화는 인공지능 인재가 국가 경쟁력을 좌우하는 주요한 영향요인으로 부각시겼다. 이에 따라 교육부에서는 인공지능 교육 공백기에 있는 초등학교 4-6학년과 중고등학생의 디지털 역량을 개발시키기 위해 대단위 SW·AI 캠프 교육 사업을 기획하였다. 이에 본 연구에서는 초등학교 4-6학년 학생들을 대상으로 하는 캠프 형 SW·AI교육프로그램을 개발하여 초등학교 4-6학년 학생들로 하여금 인공지능 기초소양을 갖추도록 하고자 한다. 이를 위해 초등학교에서의 SW·AI 교육의 의미를 정의하고 초등학교과정에서 다루어야 할 SW·AI 내용으로 'SW·AI의 이해', 'SW·AI의 원리와 활용' 및 'SW·AI의 사회적 영향'을 설정하였다. 또한 설정된 초등학교 SW·AI 교육학습 요소와 현재 초등학교에서 사용하고 있는 교과서의 관련 교과 및 단원과의 연계를 시도하였다. 교육에 사용되는 프로그램으로는 블록코딩 기반의 소프트웨어 코딩 학습 도구인 엔트리를 통하여 소프트웨어 프로그래밍 기초 역량을 강화하도록 하였으며, 모든 프로그램은 초등학생의 발달적 특징을 고려하여 경험과 체험 위주의 참여자 중심으로 운영되도록 설계하였다. 본 연구에서 이루어진 SW·AI 캠프 교육 프로그램은 방과 후 과정이나 방학 등을 이용하여 단기간에 운영되는 프로그램이다. 따라서 이를 토대로 초등학교 과정에서 SW·AI 교육이 정규교육과정의 일원으로 편성되어 운영되기 위해서는 정규교과 내용분석과 SW·AI 교육내용의 심층적인 분석을 기초로 한 연구가 필요함을 제언하는 바이다.

생성형 인공지능의 수학 문제 풀이에 대한 성능 분석: ChatGPT 4, Claude 3 Opus, Gemini Advanced를 중심으로 (Analysis of generative AI's mathematical problem-solving performance: Focusing on ChatGPT 4, Claude 3 Opus, and Gemini Advanced)

  • 오세준;윤정은;정유진;조윤주;심효섭;권오남
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제63권3호
    • /
    • pp.549-571
    • /
    • 2024
  • 디지털·AI 기반 교수·학습이 강조됨에 따라 생성형 AI의 교육적 활용에 대한 논의가 활발해지고 있다. 본 연구는 고등학교 1학년 수학 교과서 5종의 예제와 문제 풀이에 대한 ChatGPT 4, Claude 3 Opus, Gemini Advanced의 수학적 성능을 분석하였다. 총 1,317개 문항에 대해 전체 정답률과 기능별 특징을 살펴본 결과, ChatGPT 4의 전체 정답률이 0.85로 가장 높았고, Claude 3 Opus가 0.67, Gemini Advanced가 0.42 순으로 나타났다. 기능별로는 함수 구하기와 증명하기에서 세 모델 모두 높은 정답률을 보였으나, 설명하기와 그래프 그리기에서는 상대적으로 낮은 정답률을 보였다. 특히 경우의 수 세기에서 ChatGPT 4와 Claude 3 Opus가 1.00의 정답률을 보인 반면, Gemini Advanced는 0.56으로 낮았다. 또한 모든 모델이 벤 다이어그램을 이용한 설명하기와 이미지 생성이 필요한 문제에서 어려움을 겪었다. 연구 결과를 바탕으로 교사들은 각 AI 모델의 강점과 한계를 파악하고 이를 수업에 적절히 활용할 수 있을 것이다. 본 연구는 생성형 AI의 수학적 성능을 분석함으로써, 실제 수학 수업에서의 생성형 AI의 활용 가능성을 제시했다는 점에서 의의가 있다. 또한 인공지능시대의 수학 교육에서 교사의 역할을 재정립하는 데 중요한 시사점을 제공하였다. 향후 생성형 AI와 교사의 협력적 교육 모델 개발, AI를 활용한 개별화 학습 방안 연구 등이 필요할 것이다.

인공지능 수학 교육을 위한 빅데이터 프로젝트 과제 가이드라인 (Guidelines for big data projects in artificial intelligence mathematics education)

  • 이정화;한채린;임웅
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제62권2호
    • /
    • pp.289-302
    • /
    • 2023
  • 지식정보사회의 비약적인 발전에 힘입어 빅데이터를 분석하여 가치있는 결과물을 도출하고 유용한 정보를 추출하는 역량이 학교 수학의 주요 목표 중 하나로 급부상하고 있다. 고등학교 수학 진로 선택 과목 중 하나인 <인공지능 수학>은 디지털 기술을 활용한 통계 프로젝트를 통해 빅데이터에 기반한 새로운 통계 교육의 기회를 제공할 수 있다. 이 연구에서는 효과적인 빅데이터 통계 프로젝트 기반 과제를 설계하기 위한 일련의 가이드라인을 제안하고, 이 기준에 따라 5종의 인공지능 수학 교과서에 실린 최적화 단원 과제들을 평가하였다. 인공지능 수학 교과에서 빅데이터 통계 프로젝트 과제를 설계 시 고려하도록 도출된 가이드라인은 다음과 같다: (1) 지식과 기술을 국가 학교 수학 교육과정에 맞추고, (2) 전처리된 대규모 데이터 세트를 사용하며, (3) 데이터 과학자의 문제 해결 방법을 사용하고, (4) 의사 결정을 장려하며, (5) 공학도구를 활용하고, (6) 협업 학습을 촉진한다. 분석 결과에 따르면 가이드라인에 완전히 부합하는 과제는 드물었고, 특히 대부분의 교과서에서 가이드라인 2에 해당하는 요소를 프로젝트 과제에서 통합하지 못하고 있는 것으로 나타났다. 또한 소규모 데이터 세트나 빅데이터를 전처리 없이 직접 사용하는 경우가 많아 학생들의 빅데이터의 개념에 대한 오해를 불러일으킬 것이 우려된다. 본 연구에서는 결과를 토대로 인공지능에 필요한 관련 수학 지식과 기술을 밝히고, 이것이 빅데이터 과제에 통합될 때 얻을 수 있는 잠재적 이점과 교육적 고려사항에 대해 논의하였다. 이 연구는 수학적 개념과 머신러닝 알고리즘과의 연계 및 빅데이터를 사용하는 통계 교육에서의 효과적인 공학적 도구 사용에 대한 통찰을 제공하고자 하였다.