• Title/Summary/Keyword: AI Monitoring System

Search Result 149, Processing Time 0.029 seconds

Development of IoT-based Hazardous Gas Environment Control System (IoT 기반 유해 가스 환경 제어 시스템 개발)

  • Chul-Hoon Kim;Dae-Hyun Ryu;Tae-Wan Choi
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.5
    • /
    • pp.1013-1018
    • /
    • 2024
  • This study developed and evaluated a real-time monitoring system utilizing IoT technology to prevent disasters caused by hazardous gases in industrial settings. The developed system detects harmful gases in real-time and issues prompt alerts, achieving over 98% data accuracy and response times under 3 seconds. The system consists of sensor nodes, a central processing unit, and a user interface, monitoring the work environment and worker status in real-time through a cloud-based remote surveillance and control program. Performance evaluation results show that this system presents a new approach for effectively managing safety in industrial sites. Future developments are expected to include improvements in multi-gas detection capabilities, development of AI-based prediction models, and enhanced security measures, evolving into a more advanced monitoring system.

AI-based Bridge Safety Monitoring System Model (AI 기반의 교량 안전 모니터링 시스템 모델)

  • Yeong-Hwi Ahn;Hyoung-Min Ham;Jong-Su Park;Dong-Hyun Kim
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.107-108
    • /
    • 2023
  • 본 논문에서는 교량의 변위를 IoT 장치를 이용하여 실시간 측정하고 추출된 데이터를 이용하여 교량의 이상징후를 AI 기반으로 진단 및 모니터링 하는 방법을 제안한다. AI 모델 학습 학습을 위해서 비정상 상태의 교량이 필요하지만, 실제 교량에 인위적으로 비정상 상태를 만들 수 없으므로, 탄성 받침을 이용하여 모의 교량을 제작하였다. 탄성 받침을 이용하여 제작에 반영 및 모의교량에 적합한 모의 차량도 제작하여 정상적 데이터와 비정상적 데이터를 수집하였다. 수집된 데이터를 전처리 과정을 통해 AI 분석을 통해 교량의 이상 징후를 진단 및 모니터링하였으며, 제안 모델을 실험한 결과 96.7%의 정확도가 도출되었다.

  • PDF

Development of Induction machine Diagnosis System using LabVIEW and PDA (LabVIEW 기반의 PDA를 이용한 기계 진단 시스템의 개발)

  • Son, Jong-Duk;Yang, Bo-Suk;Han, Tian;Ha, Jong-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.945-948
    • /
    • 2005
  • Mobile computing devices are becoming increasingly prevalent in a huge range of physical area, offering a considerable market opportunity. The focus of this paper is on the development of a platform of fault diagnosis system integrating with personal digital assistant (PDA). An improvement of induction machine rotor fault diagnosis based on AI algorithms approach is presented. This network system consists of two parts; condition monitoring and fault diagnosis by using Artificial Intelligence algorithm. LabVIEW allows easy interaction between acquisition instrumentation and operators. Also it can easily integrate AI algorithm. This paper presents a development environment fur intelligent application for PDA. The introduced configuration is a LabVIEW application in PDA module toolkit which is LabVIEW software.

  • PDF

Does Artificial Intelligence (AI)-based Applications Improve Operational Efficiency in Healthcare Organizations?: Opportunities and Challenges (인공지능(AI) 기반 애플리케이션 도입이 의료기관의 운영효율성을 향상시킬까?: 기회와 도전)

  • Lee DonHee
    • Journal of Korean Society for Quality Management
    • /
    • v.52 no.3
    • /
    • pp.557-574
    • /
    • 2024
  • Purpose: This study investigates whether adoption of AI-based systems and technologies improve operational efficiency in healthcare organizations through a systematic review of the literature and real-world examples. Methods: In this study, we divided the AI application cases into care services and administrative functions, then we explored opportunities and challenges in each area. Results: The analysis results indicate that the care service field primarily uses AI-based systems and technologies for quick disease diagnosis and treatment, surgery and disease prediction, and the provision of personalized healthcare services. In the administrative field, AI-based systems and technologies are used to streamline processes and automate tasks for the following functions: patient monitoring through virtual care support systems; automating patient management systems for appointment times, reservations, changes, and no-shows; facilitating patient-medical staff interaction and feedback through interaction support systems; and managing admission and discharge procedures. Conclusion: The results of this study provide valuable insights and significant implications about the application of AI-based systems or technologies for various innovation opportunities in healthcare organizations. As digital transformation accelerates across all industries, these findings provide valuable information to managers of hospitals that are interested in AI adoption, as well as for policymakers involved in the formulation of medical regulations and laws.

Implementation of Scenario-based AI Voice Chatbot System for Museum Guidance (박물관 안내를 위한 시나리오 기반의 AI 음성 챗봇 시스템 구현)

  • Sun-Woo Jung;Eun-Sung Choi;Seon-Gyu An;Young-Jin Kang;Seok-Chan Jeong
    • The Journal of Bigdata
    • /
    • v.7 no.2
    • /
    • pp.91-102
    • /
    • 2022
  • As artificial intelligence develops, AI chatbot systems are actively taking place. For example, in public institutions, the use of chatbots is expanding to work assistance and professional knowledge services in civil complaints and administration, and private companies are using chatbots for interactive customer response services. In this study, we propose a scenario-based AI voice chatbot system to reduce museum operating costs and provide interactive guidance services to visitors. The implemented voice chatbot system consists of a watcher object that detects the user's voice by monitoring a specific directory in real-time, and an event handler object that outputs AI's response voice by performing inference by model sequentially when a voice file is created. And Including a function to prevent duplication using thread and a deque, GPU operations are not duplicated during inference in a single GPU environment.

How to build an AI Safety Management Chatbot Service based on IoT Construction Health Monitoring (IoT 건축시공 건전성 모니터링 기반 AI 안전관리 챗봇서비스 구축방안)

  • Hwi Jin Kang;Sung Jo Choi;Sang Jun Han;Jae Hyun Kim;Seung Ho Lee
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.1
    • /
    • pp.106-116
    • /
    • 2024
  • Purpose: This paper conducts IoT and CCTV-based safety monitoring to analyze accidents and potential risks occurring at construction sites, and detect and analyze risks such as falls and collisions or abnormalities and to establish a system for early warning using devices like a walkie-talkie and chatbot service. Method: A safety management service model is presented through smart construction technology case studies at the construction site and review a relevant literature analysis. Result: According to 'Construction Accident Statistics,' in 2021, there were 26,888 casualties in the construction industry, accounting for 26.3% of all reported accidents. Fatalities in construction-related accidents amounted to 417 individuals, representing 50.5% of all industrial accident-related deaths. This study suggests implementing AI chatbot services for construction site safety management utilizing IoT-based health monitoring technologies in smart construction practices. Construction sites where stakeholders such as workers participate were demonstrated by implementing an artificial intelligence chatbot system by selecting major risk areas within the workplace, such as scaffolding processes, openings, and access to hazardous machinery. Conclusion: The possibility of commercialization was confirmed by receiving more than 90 points in the satisfaction survey of participating workers regarding the empirical results of the artificial intelligence chatbot service at construction sites.

A loop closing scheme using UWB based indoor positioning technique (UWB 기반 실내 측위 기술을 활용한 루프 클로징 기법)

  • Hyunwoo You;Jungkyun Lee;Somi Nam;Juyeon Lee;Yoonseo Lee;Minsung Kim;Hong Min
    • Smart Media Journal
    • /
    • v.12 no.4
    • /
    • pp.41-46
    • /
    • 2023
  • UWB is a type of technology used for indoor positioning and is characterized by higher accuracy than RSSI-based schemes. Mobile equipment operating based on ROS can monitor the environment around the equipment using lidar and cameras. When applying the loop closing technique to determine the starting position in this monitoring process, the existing method has a problem of low accuracy because the closing operation occurs only when there are feature points on the image. In this paper, to solve this problem, we designed a system that increases the accuracy of loop closing work by providing location information by mounting a UWB tag on a mobile device. In addition, the accuracy of the UWB-based indoor positioning system was evaluated through experiments, and it was verified that it could be used for loop closing techniques.

A Design of Intelligent Patient Monitoring System using Model Base (모델 베이스를 이용한 지능적 환자 감시 시스템의 설계)

  • Kim, Jung-Ook;Lee, Seok-Pil;Chi, Sung-Do;Park, Sang-Hui
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.05
    • /
    • pp.155-159
    • /
    • 1995
  • A design method that can easily construct intelligent patient monitoring systems is proposed. To achieve the design method, the SES/MB concept and a discrete event-based logic control formalism based on a set theory is introduced. In this control paradigm the controller expects to receive confirming sensor responses to its control commands within definite time windows determined by DEVS model of the system under control. Because data to be used for rule-based symbolic reasoning are to be abstracted, several AI methods are applied the processes. These methods are applied to intelligent patient monitoring systems so that they facilitate transformation from low level raw data to high level linguistic data. Model-based system representations have advantages of reusability, extensibility, flexsibility, independent testability and encapsulation.

  • PDF

A New Study on Vibration Data Acquisition and Intelligent Fault Diagnostic System for Aero-engine

  • Ding, Yongshan;Jiang, Dongxiang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.16-21
    • /
    • 2008
  • Aero-engine, as one kind of rotating machinery with complex structure and high rotating speed, has complicated vibration faults. Therefore, condition monitoring and fault diagnosis system is very important for airplane security. In this paper, a vibration data acquisition and intelligent fault diagnosis system is introduced. First, the vibration data acquisition part is described in detail. This part consists of hardware acquisition modules and software analysis modules which can realize real-time data acquisition and analysis, off-line data analysis, trend analysis, fault simulation and graphical result display. The acquisition vibration data are prepared for the following intelligent fault diagnosis. Secondly, two advanced artificial intelligent(AI) methods, mapping-based and rule-based, are discussed. One is artificial neural network(ANN) which is an ideal tool for aero-engine fault diagnosis and has strong ability to learn complex nonlinear functions. The other is data mining, another AI method, has advantages of discovering knowledge from massive data and automatically extracting diagnostic rules. Thirdly, lots of historical data are used for training the ANN and extracting rules by data mining. Then, real-time data are input into the trained ANN for mapping-based fault diagnosis. At the same time, extracted rules are revised by expert experience and used for rule-based fault diagnosis. From the results of the experiments, the conclusion is obvious that both the two AI methods are effective on aero-engine vibration fault diagnosis, while each of them has its individual quality. The whole system can be developed in local vibration monitoring and real-time fault diagnosis for aero-engine.

  • PDF

Development of a Slope Condition Analysis System using IoT Sensors and AI Camera (IoT 센서와 AI 카메라를 융합한 급경사지 상태 분석 시스템 개발)

  • Seungjoo Lee;Kiyen Jeong;Taehoon Lee;YoungSeok Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.23 no.2
    • /
    • pp.43-52
    • /
    • 2024
  • Recent abnormal climate conditions have increased the risk of slope collapses, which frequently result in significant loss of life and property due to the absence of early prediction and warning dissemination. In this paper, we develop a slope condition analysis system using IoT sensors and AI-based camera to assess the condition of slopes. To develop the system, we conducted hardware and firmware design for measurement sensors considering the ground conditions of slopes, designed AI-based image analysis algorithms, and developed prediction and warning solutions and systems. We aimed to minimize errors in sensor data through the integration of IoT sensor data and AI camera image analysis, ultimately enhancing the reliability of the data. Additionally, we evaluated the accuracy (reliability) by applying it to actual slopes. As a result, sensor measurement errors were maintained within 0.1°, and the data transmission rate exceeded 95%. Moreover, the AI-based image analysis system demonstrated nighttime partial recognition rates of over 99%, indicating excellent performance even in low-light conditions. Through this research, it is anticipated that the analysis of slope conditions and smart maintenance management in various fields of Social Overhead Capital (SOC) facilities can be applied.