• Title/Summary/Keyword: AI Model

Search Result 1,465, Processing Time 0.027 seconds

A Study on the Work Process of Creating AI SORA Videos (AI SORA 동영상 생성 제작의 작업 과정에 관한 고찰)

  • Cho, Hyun Kyung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.5
    • /
    • pp.827-832
    • /
    • 2024
  • The AI program Sora is a video production model that can be used innovatively and is the starting point of a major paradigm shift in video planning and production in the future. In this paper, through consideration of the characteristics, application, and process of the AI video production program, the characteristics of the AI design video production method were understood, and the production algorithm was considered. The detailed consideration and characteristics of the work creation process for the video graphic AI video generation program that will be intensified every year were examined. Next, the method of generating a customized video with a text prompt and the process of innovative production results different from the previous production method were considered. In addition, the design direction through the generation of AI images was studied through the review of the strengths and weaknesses of the image details of the recently announced AI music video results. By considering the security of the AI generation video Sora and looking at the internal process of the actual AI process, it will be possible to present indicators for the future direction of AI video model production and education along with the direction of the design designer and education system. In the text and conclusion, we analyzed the strengths and weaknesses and future status of OpenAI Sora image, concluded how to apply the Sora model's capabilities, limitations, quality, and human creativity, and presented problems and alternatives through examples of the Sora model's capabilities and limitations to increase human creativity.

Perceptions of Benefits and Risks of AI, Attitudes toward AI, and Support for AI Policies (AI의 혜택 및 위험성 인식과 AI에 대한 태도, 정책 지지의 관계)

  • Lee, Jayeon
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.4
    • /
    • pp.193-204
    • /
    • 2021
  • Based on risk-benefit theory, this study examined a structural equation model accounting for the mechanisms through which affective perceptions of AI predicting individuals' support for the government's Ai policies. Four perceived characteristics of AI (i.e., usefulness, entertainment value, privacy concern, threat of human replacement) were investigated in relation to perceived benefits/risks, attitudes toward AI, and AI policy support, based on a nationwide sample of South Korea (N=352). The hypothesized model was well supported by the data: Perceived usefulness was a strong predictor of perceived benefit, which in turn predicted attitude and support. Perceived benefit and attitude played significant roles as mediators. Perceived entertainment value along with perceived usefulness and privacy concern predicted attitude, not perceived benefit. Neither attitude nor support was significantly associated with perceived risk which was predicted by privacy concern. Theoretical and practical implications of the results are discussed.

The Direction of AI Classes using AI Education Platform

  • Ryu, Mi-Young;Han, Seon-Kwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.5
    • /
    • pp.69-76
    • /
    • 2022
  • In this paper, we presented the contents and methods of AI classes using AI platforms. First, we extracted the content elements of each stage of the AI class using the AI education platform from experts. Classes using the AI education platform were divided into 5 stages and 25 class elements were selected. We also conducted a survey of 82 teachers and analyzed the factors that they acted importantly at each stage of the AI platform class. As a result of the analysis, teachers regarded the following contents as important factors for each stage that are AI model preparation stage (the learning stage of the AI model), problem recognition stage (identification of problems and AI solution potential), data processing stage (understanding the types of data), AI modelingstage (AI value and ethics), and problem solvingstage (AI utilization in real life).

The Requirements Analysis of Data Management and Model Reliability for Smart Factory Predictive Maintenance AI Model Development (스마트팩토리 예지보전 AI 모델 개발을 위한 데이터 관리 및 모델 신뢰성 요구사항 분석)

  • Jinse Kim;Jung-Won Lee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.644-646
    • /
    • 2023
  • 스마트팩토리는 협동 로봇과 같은 프로그래머블한 설비의 유기적인 협업을 통해 최적화된 공정을 수행한다. 따라서 수집되는 센서 데이터의 특징과 환경 조건의 복잡도가 높아, 예지보전을 위한 AI 소프트웨어의 개발 시 요구사항 기반의 체계적인 개발 및 검증이 필수적이다. 본 논문에서는 AI 소프트웨어의 요구사항을 사용자와 시스템 관점에서 정의하고, AI 모델 개발 프로세스와 스마트팩토리 예지보전 측면에서 분석한다. 도출된 요구사항을 CNN 기반의 협동 로봇 기어 마모 예측 모델의 개발에 적용하여 데이터 관리와 모델 신뢰성 관점의 요구사항을 분석 및 검증하였다.

A Study on User Switching Intention from Contact Center-oriented to AI Chatbot-Oriented Customer Services (컨택센터 중심에서 인공지능 챗봇 중심 고객 서비스로의 사용자 전환의도에 관한 연구)

  • Ann Seunggyu;Ahn Hyunchul
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.1
    • /
    • pp.57-76
    • /
    • 2023
  • This study analyzes the factors and effects on the users' intention to switch from contact center-oriented to AI chatbot-oriented customer services by combining Push-Pull-Mooring Model and provides insights for companies considering the adoption of AI chatbots. To test the model, we surveyed users with experience using chatbots at least once across different age groups. Finally, we analyzed 176 cases for the analysis using IBM SPSS Statistics and SmartPLS 4.0. The results of hypotheses testing rejected the hypotheses for variables of inconsistent quality and low availability of push factors and low switching cost of mooring factor while accepting the hypotheses for the tardy response of push factors and all pull factors. Therefore, these findings provide important implications for researchers and practitioners who wish to conduct research or adopt AI chatbots. In conclusion, users do not feel inconvenienced by the contact center-oriented service but also perceive high trust and convenience with AI chatbot-oriented service. However, despite low switching costs, users consider chatbots a complementary tool rather than an alternative. So, companies adopting AI chatbots should consider what features the users expect from AI chatbots and facilitate these features when implementing AI chatbots.

Explainable AI Application for Machine Predictive Maintenance (설명 가능한 AI를 적용한 기계 예지 정비 방법)

  • Cheon, Kang Min;Yang, Jaekyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.4
    • /
    • pp.227-233
    • /
    • 2021
  • Predictive maintenance has been one of important applications of data science technology that creates a predictive model by collecting numerous data related to management targeted equipment. It does not predict equipment failure with just one or two signs, but quantifies and models numerous symptoms and historical data of actual failure. Statistical methods were used a lot in the past as this predictive maintenance method, but recently, many machine learning-based methods have been proposed. Such proposed machine learning-based methods are preferable in that they show more accurate prediction performance. However, with the exception of some learning models such as decision tree-based models, it is very difficult to explicitly know the structure of learning models (Black-Box Model) and to explain to what extent certain attributes (features or variables) of the learning model affected the prediction results. To overcome this problem, a recently proposed study is an explainable artificial intelligence (AI). It is a methodology that makes it easy for users to understand and trust the results of machine learning-based learning models. In this paper, we propose an explainable AI method to further enhance the explanatory power of the existing learning model by targeting the previously proposedpredictive model [5] that learned data from a core facility (Hyper Compressor) of a domestic chemical plant that produces polyethylene. The ensemble prediction model, which is a black box model, wasconverted to a white box model using the Explainable AI. The proposed methodology explains the direction of control for the major features in the failure prediction results through the Explainable AI. Through this methodology, it is possible to flexibly replace the timing of maintenance of the machine and supply and demand of parts, and to improve the efficiency of the facility operation through proper pre-control.

Development of a Shoe Recommendation Model for Matching Outfits Using Generative Artificial Intelligence (생성형 인공지능을 활용한 신발 추천 모델 개발)

  • Jun Woo CHOI
    • Journal of Korea Artificial Intelligence Association
    • /
    • v.1 no.1
    • /
    • pp.7-10
    • /
    • 2023
  • This study proposes an AI-based shoe recommendation model based on user clothing image data to solve the problem of the global fashion industry, which is worsening due to factors such as the economic downturn. Shoes are an important part of modern fashion, and this research aims to improve user satisfaction and contribute to economic growth through a generative AI-based shoe recommendation service. By utilizing generative AI in the personalized consumer market, we show the feasibility, efficiency, and improvements through an accessible web-based implementation. In conclusion, this study provides insights to help fulfill consumer needs in the ever-changing fashion market by implementing a generative AI-based shoe recommendation model.

The Development of Rule-based AI Engagement Model for Air-to-Air Combat Simulation (공대공 전투 모의를 위한 규칙기반 AI 교전 모델 개발)

  • Minseok, Lee;Jihyun, Oh;Cheonyoung, Kim;Jungho, Bae;Yongduk, Kim;Cheolkyu, Jee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.637-647
    • /
    • 2022
  • Since the concept of Manned-UnManned Teaming(MUM-T) and Unmanned Aircraft System(UAS) can efficiently respond to rapidly changing battle space, many studies are being conducted as key components of the mosaic warfare environment. In this paper, we propose a rule-based AI engagement model based on Basic Fighter Maneuver(BFM) capable of Within-Visual-Range(WVR) air-to-air combat and a simulation environment in which human pilots can participate. In order to develop a rule-based AI engagement model that can pilot a fighter with a 6-DOF dynamics model, tactical manuals and human pilot experience were configured as knowledge specifications and modeled as a behavior tree structure. Based on this, we improved the shortcomings of existing air combat models. The proposed model not only showed a 100 % winning rate in engagement with human pilots, but also visualized decision-making processes such as tactical situations and maneuvering behaviors in real time. We expect that the results of this research will serve as a basis for development of various AI-based engagement models and simulators for human pilot training and embedded software test platform for fighter.

A Study of an AI-Based Content Source Data Generation Model using Folk Paintings and Genre Paintings (민화와 풍속화를 이용한 AI 기반의 콘텐츠 원천 데이터 생성 모델의 연구)

  • Yang, Seokhwan;Lee, Young-Suk
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.5
    • /
    • pp.736-743
    • /
    • 2021
  • Due to COVID-19, the non-face-to-face content market is growing rapidly. However, most of the non-face-to-face content such as webtoons and web novels are produced based on the traditional culture of other countries, not Korean traditional culture. The biggest cause of this situation is the lack of reference materials for creating based on Korean traditional culture. Therefore, the need for materials on traditional Korean culture that can be used for content creation is emerging. In this paper, we propose a generation model of source data based on traditional folk paintings through the fusion of traditional Korean folk paintings and AI technology. The proposed model secures basic data based on folk tales, analyzes the style and characteristics of folk tales, and converts historical backgrounds and various stories related to folk tales into data. In addition, using the built data, various new stories are created based on AI technology. The proposed model is highly utilized in that it provides a foundation for new creation based on Korean traditional folk painting and AI technology.

A Methodology of AI Learning Model Construction for Intelligent Coastal Surveillance (해안 경계 지능화를 위한 AI학습 모델 구축 방안)

  • Han, Changhee;Kim, Jong-Hwan;Cha, Jinho;Lee, Jongkwan;Jung, Yunyoung;Park, Jinseon;Kim, Youngtaek;Kim, Youngchan;Ha, Jeeseung;Lee, Kanguk;Kim, Yoonsung;Bang, Sungwan
    • Journal of Internet Computing and Services
    • /
    • v.23 no.1
    • /
    • pp.77-86
    • /
    • 2022
  • The Republic of Korea is a country in which coastal surveillance is an imperative national task as it is surrounded by seas on three sides under the confrontation between South and North Korea. However, due to Defense Reform 2.0, the number of R/D (Radar) operating personnel has decreased, and the period of service has also been shortened. Moreover, there is always a possibility that a human error will occur. This paper presents specific guidelines for developing an AI learning model for the intelligent coastal surveillance system. We present a three-step strategy to realize the guidelines. The first stage is a typical stage of building an AI learning model, including data collection, storage, filtering, purification, and data transformation. In the second stage, R/D signal analysis is first performed. Subsequently, AI learning model development for classifying real and false images, coastal area analysis, and vulnerable area/time analysis are performed. In the final stage, validation, visualization, and demonstration of the AI learning model are performed. Through this research, the first achievement of making the existing weapon system intelligent by applying the application of AI technology was achieved.