• Title/Summary/Keyword: AI Importance

Search Result 320, Processing Time 0.025 seconds

A Study on the Definition of Data Literacy for Elementary and Secondary Artificial Intelligence Education (초·중등 인공지능 교육을 위한 데이터 리터러시 정의 연구)

  • Kim, SeulKi;Kim, Taeyoung
    • 한국정보교육학회:학술대회논문집
    • /
    • 2021.08a
    • /
    • pp.59-67
    • /
    • 2021
  • The development of AI technology has brought about a big change in our lives. As AI's influence grows from life to society to the economy, the importance of education on AI and data is also growing. In particular, the OECD Education Research Report and various domestic information and curriculum studies address data literacy and present it as an essential competency. Looking at domestic and international studies, one can see that the definition of data literacy differs in its specific content and scope from researchers to researchers. Thus, the definition of major research related to data literacy was analyzed from various angles and derived from various angles. In key studies, Word2vec natural language processing methods, along with word frequency analysis used to define data literacy, are used to analyze semantic similarities and nominate them based on content elements of curriculum research to derive the definition of 'understanding and using data to process information'. Based on the definition of data literacy derived from this study, we hope that the contents will be revised and supplemented, and more research will be conducted to provide a good foundation for educational research that develops students' future capabilities.

  • PDF

A Survey on Feature Store (Feature 저장소 기술 동향)

  • Hur, S.J.;Kim, J.Y.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.2
    • /
    • pp.65-74
    • /
    • 2021
  • In this paper, we discussed the necessity and importance of introducing feature stores to establish a collaborative environment between data engineering work and data science work. We examined the technology trends of feature stores by analyzing the status of some major feature stores. Moreover, by introducing a feature store, we can reduce the cost of performing artificial intelligence (AI) projects and improve the performance and reliability of AI models and the convenience of model operation. The future task is to establish technical requirements for establishing a collaborative environment between data engineering work and data science work and develop a solution for providing a collaborative environment based on this.

MEC-Based Massive Edge Device Monitoring Techniques for Deviceless Computing (디바이스리스 컴퓨팅을 위한 MEC기반 대규모 엣지 디바이스 모니터링 기술 연구)

  • In-geol Chun;Jong-soo Seok
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.19 no.5
    • /
    • pp.211-218
    • /
    • 2024
  • As computing technology advances, many services, including AI, that previously operated in the cloud will become usable on devices that users carry. The emergence of ultra-high-speed mobile networks like 5G dramatically increases the utility of numerous devices in the real world. In the future, with technologies like deviceless computing, the range of applications will diversify even further, and demand will continue to grow. Consequently, the importance of technology for monitoring vast amounts of device information and deploying AI services tailored to the functions and performance of each device is becoming increasingly evident. Therefore, this paper proposes a large-scale edge device monitoring technique necessary to leverage simple sensors and low-spec, low-resource devices in conjunction with Multi-access Edge Computing (MEC) to provide various AI functionalities.

A Comparative Analysis of Contents Related to Artificial Intelligence in National and International K-12 Curriculum (국내외 초·중등학교 인공지능 교육과정 분석)

  • Lee, Eunkyoung
    • The Journal of Korean Association of Computer Education
    • /
    • v.23 no.1
    • /
    • pp.37-44
    • /
    • 2020
  • As the importance of artificial intelligence(AI) education is emphasized recently, policies and researches are being promoted to develop the AI curriculum or courses for K-12 students in worldwide. In this study, researcher analysed a synthesis of contents and standards on AI education curriculum to present implications for AI education in the elementary and secondary schools. As a result, Korea and the United States are proposing national curriculum standards to provide the basis for AI curriculum establishment in school sites and to provide guidelines for various related policies such as teacher training programs. The EU's AI education is characterized by its curriculum and online courses to ensure that all citizens of the EU have AI literacy, rather than designating students or subjects at specific school levels. In terms of educational contents and levels, Korea, United States, and EU's curriculum or standards includes basics and applications related to machine learning and neural network based on the fundamental concepts and principles of artificial intelligence.

Challenges of diet planning for children using artificial intelligence

  • Changhun, Lee;Soohyeok, Kim;Jayun, Kim;Chiehyeon, Lim;Minyoung, Jung
    • Nutrition Research and Practice
    • /
    • v.16 no.6
    • /
    • pp.801-812
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Diet planning in childcare centers is difficult because of the required knowledge of nutrition and development as well as the high design complexity associated with large numbers of food items. Artificial intelligence (AI) is expected to provide diet-planning solutions via automatic and effective application of professional knowledge, addressing the complexity of optimal diet design. This study presents the results of the evaluation of the utility of AI-generated diets for children and provides related implications. MATERIALS/METHODS: We developed 2 AI solutions for children aged 3-5 yrs using a generative adversarial network (GAN) model and a reinforcement learning (RL) framework. After training these solutions to produce daily diet plans, experts evaluated the human- and AI-generated diets in 2 steps. RESULTS: In the evaluation of adequacy of nutrition, where experts were provided only with nutrient information and no food names, the proportion of strong positive responses to RL-generated diets was higher than that of the human- and GAN-generated diets (P < 0.001). In contrast, in terms of diet composition, the experts' responses to human-designed diets were more positive when experts were provided with food name information (i.e., composition information). CONCLUSIONS: To the best of our knowledge, this is the first study to demonstrate the development and evaluation of AI to support dietary planning for children. This study demonstrates the possibility of developing AI-assisted diet planning methods for children and highlights the importance of composition compliance in diet planning. Further integrative cooperation in the fields of nutrition, engineering, and medicine is needed to improve the suitability of our proposed AI solutions and benefit children's well-being by providing high-quality diet planning in terms of both compositional and nutritional criteria.

Design of Artificial Intelligence Textbooks for Kindergarten to Develop Computational Thinking based on Pattern Recognition. (패턴인식에 기반한 컴퓨팅사고력 계발을 위한 유치원 AI교재 설계)

  • Kim, Sohee;Jeong, Youngsik
    • Journal of The Korean Association of Information Education
    • /
    • v.25 no.6
    • /
    • pp.927-934
    • /
    • 2021
  • AI(Artificial intelligence) is gradually taking up a large part of our lives, and the pace of AI development is accelerating. It is called ACT that develop students' computational thinking in the way artificial intelligence learns. Among ACTs, pattern recognition is an essential factor in efficiently solving problems. Pattern analysis is part of the pattern recognition process. In fact, Netflix's personalized movie recommendation service and what it named Covid-19 after repeated symptoms are all the results of pattern analysis. While the importance of ACT, including pattern recognition, is highlighted, software education for kindergarten and elementary school lower grades is much insufficient compared to foreign countries. Therefore, this study aims to design and develop textbooks for the development of artificial intelligence-based computational thinking through pattern analysis for kindergarten students.

Speed Prediction and Analysis of Nearby Road Causality Using Explainable Deep Graph Neural Network (설명 가능 그래프 심층 인공신경망 기반 속도 예측 및 인근 도로 영향력 분석 기법)

  • Kim, Yoo Jin;Yoon, Young
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.1
    • /
    • pp.51-62
    • /
    • 2022
  • AI-based speed prediction studies have been conducted quite actively. However, while the importance of explainable AI is emerging, the study of interpreting and reasoning the AI-based speed predictions has not been carried out much. Therefore, in this paper, 'Explainable Deep Graph Neural Network (GNN)' is devised to analyze the speed prediction and assess the nearby road influence for reasoning the critical contributions to a given road situation. The model's output was explained by comparing the differences in output before and after masking the input values of the GNN model. Using TOPIS traffic speed data, we applied our GNN models for the major congested roads in Seoul. We verified our approach through a traffic flow simulation by adjusting the most influential nearby roads' speed and observing the congestion's relief on the road of interest accordingly. This is meaningful in that our approach can be applied to the transportation network and traffic flow can be improved by controlling specific nearby roads based on the inference results.

Development of Guideline for Heuristic Based Usability Evaluation on SaMD (SaMD에 대한 휴리스틱 기반 사용적합성 평가 가이드라인 개발)

  • Jong Yeop Kim;Junghyun Kim;Zero Kim;Myung Jin Chung
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.428-442
    • /
    • 2023
  • In this study, we have a goal to develop usability evaluation guidelines for heuristic-based artificial intelligence-based Software as a Medical Device (SaMD) in the medical field. We conducted a gap analysis between medical hardware (H/W) and non-medical software (S/W) based on ten heuristic principles. Through severity assessments, we identified 69 evaluation domains and 112 evaluation criteria aligned with the ten heuristic principles. Subsequently, we categorized each evaluation domain into five types, including user safety, data integrity, regulatory compliance, patient therapeutic effectiveness, and user convenience. We proposed usability evaluation guidelines that apply the newly derived heuristic-based Software as a Medical Device (SaMD) evaluation factors to the risk management process. In the discussion, we also have proposed the potential applications of the research findings and directions for future research. We have emphasized the importance of the judicious application of AI technology in the medical field and the evaluation of usability evaluation and offered valuable guidelines for various stakeholders, including medical device manufacturers, healthcare professionals, and regulatory authorities.

Integrating Conversational AI-Based Serious Games to Enhance Problem-Solving Skills of Construction Students

  • Aqsa Sabir;Rahat Hussain;Syed Farhan Alam Zaidi;Muhammad Sibtain Abbas;Nasrullah Khan;Doyeop Lee;Chansik Park
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.1220-1229
    • /
    • 2024
  • In the construction industry, professionals are required to have advanced problem-solving skills to adeptly handle the dynamic challenges inherent to project execution. These skills are crucial, as they enable professionals to effectively navigate the complexities and unpredictability of construction projects, ensuring timely and cost-effective completion. This paper explores an innovative approach to enhance the problem-solving skills of construction students through the integration of conversational AI-based serious games into their educational curriculum. The objective of this research was acquired by following three phases: hazard interaction, problem identification, and AI-guided text-based communication. This approach creates an engaging learning environment, simulating real-world construction challenges and problems, focusing on the excavation phase of a construction project as a case study for students to interact with and communicate with the Conversational AI agent through text-based prompts. In the future, the proposed study can be used to evaluate how AI agents can help enhance problem-solving skills by promoting emotional engagement among participants. This research sheds light on the potential of integrating conversational AI in education, providing valuable insights for educators designing construction management training programs by underscoring the importance of engagement in real-world problem-solving scenarios.

A Research on Adversarial Example-based Passive Air Defense Method against Object Detectable AI Drone (객체인식 AI적용 드론에 대응할 수 있는 적대적 예제 기반 소극방공 기법 연구)

  • Simun Yuk;Hweerang Park;Taisuk Suh;Youngho Cho
    • Journal of Internet Computing and Services
    • /
    • v.24 no.6
    • /
    • pp.119-125
    • /
    • 2023
  • Through the Ukraine-Russia war, the military importance of drones is being reassessed, and North Korea has completed actual verification through a drone provocation towards South Korea at 2022. Furthermore, North Korea is actively integrating artificial intelligence (AI) technology into drones, highlighting the increasing threat posed by drones. In response, the Republic of Korea military has established Drone Operations Command(DOC) and implemented various drone defense systems. However, there is a concern that the efforts to enhance capabilities are disproportionately focused on striking systems, making it challenging to effectively counter swarm drone attacks. Particularly, Air Force bases located adjacent to urban areas face significant limitations in the use of traditional air defense weapons due to concerns about civilian casualties. Therefore, this study proposes a new passive air defense method that aims at disrupting the object detection capabilities of AI models to enhance the survivability of friendly aircraft against the threat posed by AI based swarm drones. Using laser-based adversarial examples, the study seeks to degrade the recognition accuracy of object recognition AI installed on enemy drones. Experimental results using synthetic images and precision-reduced models confirmed that the proposed method decreased the recognition accuracy of object recognition AI, which was initially approximately 95%, to around 0-15% after the application of the proposed method, thereby validating the effectiveness of the proposed method.