다양한 분야에서 활용되는 상황인지 시스템은 상황정보를 획득하기 위한 추상화 과정에서 규칙 기반의 인공기능 기술이 기존에 사용되었다. 그러나 서비스에 대한 사용자의 요구사항이 다양해지고 사용되는 데이터의 증대로 규칙이 복잡해지면서 규칙 기반 모델의 유지보수와 비정형 데이터를 처리하는데 어려움이 있다. 이러한 한계점을 극복하기 위해 많은 연구들에서는 상황인지 시스템에 기계학습 기술을 적용하였으며, 이러한 기계학습 기반의 모델을 상황인지 시스템에 사용하기 위해서는 주기적으로 학습 데이터를 제공해야 한다. 이에 기계학습 기반 상황인지 시스템에 대한 선행연구에서는 여러 개의 기계학습 모델을 적용하기 위한 학습 데이터 생성, 제공 등의 과정을 보였으나 제한된 종류의 기계학습 모델만을 적용 가능하여 확장성이 고려되어야 한다. 본 논문은 기계학습 기반의 상황인지 시스템의 확장성을 고려한 기계학습 모델의 학습 데이터 생성 방법을 제안한다. 제안하는 방법은 시스템의 확장성을 고려하여 기계학습 모델의 요구사항을 반영할 수 있는 학습 데이터 생성 모델을 정의하고 학습 데이터 생성 모듈을 바탕으로 각각의 기계학습 모델의 학습 데이터를 생성하는 것이다. 시스템의 확장성의 검증을 위해 실험에서는 노인의 건강상태 알림 서비스를 위한 심박상태 분석 모델을 대상으로 한 학습데이터 생성 스키마를 기반으로 학습데이터 생성 모델을 정의하고 실환경에서 정의된 모델을 S/W에 적용하여 학습데이터를 생성한다. 또한 생성된 학습데이터의 유효성을 검증하기 위해 사용되는 기계학습 모델에 생성한 학습데이터를 학습시켜 정확도를 비교하는 과정을 보인다.
인공지능 기술이 발전하면서 이미지, 음성, 텍스트 등 다양한 분야에 적용되고 있으며, 데이터가 충분한 경우 기존 기법들에 비해 좋은 결과를 보인다. 주식시장은 경제, 정치와 같은 많은 변수에 의해 영향을 받기 때문에, 주식 가격의 움직임 예측은 어려운 과제로 알려져 있다. 다양한 기계학습 기법과 인공지능 기법을 이용하여 주가 패턴을 연구하여 주가의 등락을 예측하려는 시도가 있어왔다. 본 연구는 딥러닝 기법 중 컨볼루셔널 뉴럴 네트워크(CNN)를 기반으로 주가 패턴 예측률 향상을 위한 데이터 증강 방안을 제안한다. CNN은 컨볼루셔널 계층을 통해 이미지에서 특징을 추출하여 뉴럴 네트워크를 이용하여 이미지를 분류한다. 따라서, 본 연구는 주식 데이터를 캔들스틱 차트 이미지로 만들어 CNN을 통해 패턴을 예측하고 분류하고자 한다. 딥러닝은 다량의 데이터가 필요하기에, 주식 차트 이미지에 다양한 데이터 증강(Data Augmentation) 방안을 적용하여 분류 정확도를 향상 시키는 방법을 제안한다. 데이터 증강 방안으로는 차트를 랜덤하게 변경하는 방안과 차트에 가우시안 노이즈를 적용하여 추가 데이터를 생성하였으며, 추가 생성된 데이터를 활용하여 학습하고 테스트 집합에 대한 분류 정확도를 비교하였다. 랜덤하게 차트를 변경하여 데이터를 증강시킨 경우의 분류 정확도는 79.92%였고, 가우시안 노이즈를 적용하여 생성된 데이터를 가지고 학습한 경우의 분류 정확도는 80.98%이었다. 주가의 다음날 상승/하락으로 분류하는 경우에는 60분 단위 캔들 차트가 82.60%의 정확도를 기록하였다.
The most important industrial application of gamma radiation in characterizing green compacts is the determination of the density. Examples are given where this method is applied in manufacturing technical components in powder metallurgy. The requirements imposed by modern quality management systems and operation by the workforce in industrial production are described. The accuracy of measurement achieved with this method is demonstrated and a comparison is given with other test methods to measure the density. The advantages and limitations of gamma ray densitometry are outlined. The gamma ray densitometer measures the attenuation of gamma radiation penetrating the test parts (Fig. 1). As the capability of compacts to absorb this type of radiation depends on their density, the attenuation of gamma radiation can serve as a measure of the density. The volume of the part being tested is defined by the size of the aperture screeniing out the radiation. It is a channel with the cross section of the aperture whose length is the height of the test part. The intensity of the radiation identified by the detector is the quantity used to determine the material density. Gamma ray densitometry can equally be performed on green compacts as well as on sintered components. Neither special preparation of test parts nor skilled personnel is required to perform the measurement; neither liquids nor other harmful substances are involved. When parts are exhibiting local density variations, which is normally the case in powder compaction, sectional densities can be determined in different parts of the sample without cutting it into pieces. The test is non-destructive, i.e. the parts can still be used after the measurement and do not have to be scrapped. The measurement is controlled by a special PC based software. All results are available for further processing by in-house quality documentation and supervision of measurements. Tool setting for multi-level components can be much improved by using this test method. When a densitometer is installed on the press shop floor, it can be operated by the tool setter himself. Then he can return to the press and immediately implement the corrections. Transfer of sample parts to the lab for density testing can be eliminated and results for the correction of tool settings are more readily available. This helps to reduce the time required for tool setting and clearly improves the productivity of powder presses. The range of materials where this method can be successfully applied covers almost the entire periodic system of the elements. It reaches from the light elements such as graphite via light metals (AI, Mg, Li, Ti) and their alloys, ceramics ($AI_20_3$, SiC, Si_3N_4, $Zr0_2$, ...), magnetic materials (hard and soft ferrites, AlNiCo, Nd-Fe-B, ...), metals including iron and alloy steels, Cu, Ni and Co based alloys to refractory and heavy metals (W, Mo, ...) as well as hardmetals. The gamma radiation required for the measurement is generated by radioactive sources which are produced by nuclear technology. These nuclear materials are safely encapsulated in stainless steel capsules so that no radioactive material can escape from the protective shielding container. The gamma ray densitometer is subject to the strict regulations for the use of radioactive materials. The radiation shield is so effective that there is no elevation of the natural radiation level outside the instrument. Personal dosimetry by the operating personnel is not required. Even in case of malfunction, loss of power and incorrect operation, the escape of gamma radiation from the instrument is positively prevented.
데이터과학은 스몰데이터 분석에서 출발하여, 빅데이터 분석을 위한 머신러닝, 딥러닝까지 포함하고 있다. 데이터과학은 인공지능 기술의 핵심 영역이고, 학교 교육과정에 체계적으로 반영해야 할 내용이다. 데이터과학 교육을 위해, 엔트리에서도 초등교육용 데이터 분석 도구를 제공하고 있다. 빅데이터 분석에서는 데이터 표본을 추출하여, 통계학적인 추측과 판단을 통해 분석결과를 해석한다. 본 논문에서는 통계학적인 지식을 필요로 하는 빅데이터 분석 영역을 초등영역에서 제외하기로 하고, 초등영역에 초점을 맞춘 데이터과학 교육 사례를 제안하였다. 이를 위해서, 일반적인 데이터과학 교육 단계를 먼저 설명하고, 초등 데이터과학 교육 단계를 새롭게 제안하였다. 그리고 엔트리에서 제공하는 공공 스몰 데이터를 사용한 데이터 변수 값 비교 사례와 데이터 변수 간 상관관계 분석 사례를 초등 데이터과학 교육 단계에 따라 제안하였다. 본 논문에서 제안된 엔트리 데이터분석 사례들을 활용하면, 여러 교과에서 발생하는 데이터를 사용한 초등 데이터과학 융합 교육이 가능하다. 또한, 엔트리를 사용하여 텍스트, 음성 및 영상인식 AI 도구와 결합한 데이터과학 교육 자료도 개발 가능하다.
With the recent introduction of artificial intelligence (AI) technology, the use of data is rapidly increasing, and newly generated data is also rapidly increasing. In order to obtain the results to be analyzed based on these data, the first thing to do is to classify the data well. However, when classifying data, if only one classification technique belonging to the machine learning technique is applied to classify and analyze it, an error of overfitting can be accompanied. In order to reduce or minimize the problems caused by misclassification of the classification system such as overfitting, it is necessary to derive an optimal classification by comparing the results of each classification by applying several classification techniques. If you try to interpret the data with only one classification technique, you will have poor reasoning and poor predictions of results. This study seeks to find a method for optimally classifying data by looking at data from various perspectives and applying various classification techniques such as LDA and QDA, such as linear or nonlinear classification, as a process before data analysis in data analysis. In order to obtain the reliability and sophistication of statistics as a result of big data analysis, it is necessary to analyze the meaning of each variable and the correlation between the variables. If the data is classified differently from the hypothesis test from the beginning, even if the analysis is performed well, unreliable results will be obtained. In other words, prior to big data analysis, it is necessary to ensure that data is well classified to suit the purpose of analysis. This is a process that must be performed before reaching the result by analyzing the data, and it may be a method of optimal data classification.
인공지능을 위한 병렬연산 능력이 향상됨에 따라 인공지능 적용 분야가 다양한 방향으로 확대되고 있다. 특히 방대한 데이터를 처리해야 하는 IoT센서의 데이터를 처리하기 위해 인공지능이 도입되고 있다. 하지만 시간에 따른 데이터의 중요도가 달라지는 IoT 시계열 데이터 특성상 기존의 인공지능 학습 기법을 그대로 적용하기에는 한계점이 있다. 본 과제에서는 IoT 센서 데이터를 효과적으로 처리하기 위해 시간가중치기반 및 사용자 상태값 기반 인공지능 처리기법을 연구한다. 상기 기법을 통해 기존 인공지능 학습을 적용시키는 것 보다 높은 센서 정확도를 확보 할 수 있게 된다. 이에 더해, 해당 연구를 기반으로 다양한 분야에서 인공지능 학습을 적용하는 방안을 제시하고, 지속적인 연구를 통해 다양한 분야로의 확장을 기대할 수 있다.
스트립 바이너리는 디버그 심볼 정보가 삭제된 바이너리이며, 역공학 등의 기법을 통한 바이너리 분석이 어렵다. 기존의 바이너리 분석 툴은 디버그 심볼 정보에 의존하여 바이너리를 분석하기 때문에 이러한 스트립 바이너리의 특징이 적용된 악성코드를 감지하거나 분석하는데 어려움이 있다. 이러한 문제를 해결하기 위해 스트립 바이너리의 정보를 효과적으로 추출할 수 있는 기술의 필요성이 대두되었다. 본 논문에서는 바이너리 파일의 바이트 코드가 컴파일러 버전, 최적화 옵션 등에 따라 매우 상이하게 생성된다는 점에 착안하여 효과적인 컴파일러 버전 추출을 위해 스트립 바이너리 대상으로, 전체 바이트 코드를 읽어 이미지화 시킨 후 이를 합성곱 신경망에 적용, 정확도 93.5%을 달성하여 스트립 바이너리를 기존보다 더욱 효과적으로 분석할 수 있는 계기를 제공한다.
Whole body bone scan is the most frequently performed nuclear medicine imaging to evaluate bone metastasis in cancer patients. We evaluated the performance of a VGG16-based transfer learning classifier for bone scan images in which metastatic bone lesion was present. A total of 1,000 bone scans in 1,000 cancer patients (500 patients with bone metastasis, 500 patients without bone metastasis) were evaluated. Bone scans were labeled with abnormal/normal for bone metastasis using medical reports and image review. Subsequently, gradient-weighted class activation maps (Grad-CAMs) were generated for explainable AI. The proposed model showed AUROC 0.96 and F1-Score 0.90, indicating that it outperforms to VGG16, ResNet50, Xception, DenseNet121 and InceptionV3. Grad-CAM visualized that the proposed model focuses on hot uptakes, which are indicating active bone lesions, for classification of whole body bone scan images with bone metastases.
본 연구에서는, 회전하는 축계에서 무선센서 시스템 응용을 위해 에너지 하베스터(EH, energy harvester)를 제안되었다. 무선 센서 시스템(WSS)에 지속적으로 전원을 공급하기 위해 EH를 직경 20 cm의 샤프트에 설계 및 구현되었다. 로터에는 샤프트에 부착된 7개의 U자형 코어에 코일이 쌍으로 감겨 있다. 고정자는 8개의 I-코어에 부착된 8쌍의 자석으로 구성되며 외부 고정 장치에 고정되었다. EH의 발전 전력은 회전자와 고정자 사이의 공기 공극, 코일의 권수, 그리고 축의 회전속도에 따라 조사되었다. 제작된 EH는 300 rpm 및 3 mm 공기 공극에서 최대 2.87 W의 전력을 생산하였다.
연구목적: 본 연구는 미생물의 비열 멸균 기술로서 실내 공간 내 유전체 장벽 방전 플라즈마 모듈의 방전시간에 따른 오존 발생 농도변화의 값을 통한 실내 공간 내 부유세균 살균 성능을 분석하였다. 연구방법: 76m3체적 공간의 공조장치의 공기배출 부분에 DBD 플라즈마 모듈을 설치하고 2m 떨어진 거리에서 DBD 플라즈마 처리 시간에 따라 공기 시료를 포집하여 미처리 대조군과 비교하여 부유세균 저감 효과를 분석하였다. 또한 DBD 플라즈마 방전에 따른 오존발생농도를 확인하였다. 연구결과: 대조군의 총 세균수는 1.83~2.00 logCFU/m3의 결과가 나왔으며, 시험군이 대조군에 비해 실내공기 중 부유세균의 최소 92.057%에서 최대 99.999%의 저감 효과를 보였다. 또한 평균 오존발생농도 0.04ppm으로 오존 발생농도 기준인 0.05ppm보다 낮은 결과를 확인하였다. 결론: 인체에 무해한 오존량과 DBD방전 플라즈마량을 조절함으로써 공기 중 부유세균, 바이러스등의 감염병 전파 방지의 수단으로 플라즈마 방전을 사용함에 기준이 될 것으로 사료된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.