• 제목/요약/키워드: AI Dataset

검색결과 259건 처리시간 0.022초

Support Vector Machine Model to Select Exterior Materials

  • Kim, Sang-Yong
    • 한국건축시공학회지
    • /
    • 제11권3호
    • /
    • pp.238-246
    • /
    • 2011
  • Choosing the best-performance materials is a crucial task for the successful completion of a project in the construction field. In general, the process of material selection is performed through the use of information by a highly experienced expert and the purchasing agent, without the assistance of logical decision-making techniques. For this reason, the construction field has considered various artificial intelligence (AI) techniques to support decision systems as their own selection method. This study proposes the application of a systematic and efficient support vector machine (SVM) model to select optimal exterior materials. The dataset of the study is 120 completed construction projects in South Korea. A total of 8 input determinants were identified and verified from the literature review and interviews with experts. Using data classification and normalization, these 120 sets were divided into 3 groups, and then 5 binary classification models were constructed in a one-against-all (OAA) multi classification method. The SVM model, based on the kernel radical basis function, yielded a prediction accuracy rate of 87.5%. This study indicates that the SVM model appears to be feasible as a decision support system for selecting an optimal construction method.

Keypoint-based Deep Learning Approach for Building Footprint Extraction Using Aerial Images

  • Jeong, Doyoung;Kim, Yongil
    • 대한원격탐사학회지
    • /
    • 제37권1호
    • /
    • pp.111-122
    • /
    • 2021
  • Building footprint extraction is an active topic in the domain of remote sensing, since buildings are a fundamental unit of urban areas. Deep convolutional neural networks successfully perform footprint extraction from optical satellite images. However, semantic segmentation produces coarse results in the output, such as blurred and rounded boundaries, which are caused by the use of convolutional layers with large receptive fields and pooling layers. The objective of this study is to generate visually enhanced building objects by directly extracting the vertices of individual buildings by combining instance segmentation and keypoint detection. The target keypoints in building extraction are defined as points of interest based on the local image gradient direction, that is, the vertices of a building polygon. The proposed framework follows a two-stage, top-down approach that is divided into object detection and keypoint estimation. Keypoints between instances are distinguished by merging the rough segmentation masks and the local features of regions of interest. A building polygon is created by grouping the predicted keypoints through a simple geometric method. Our model achieved an F1-score of 0.650 with an mIoU of 62.6 for building footprint extraction using the OpenCitesAI dataset. The results demonstrated that the proposed framework using keypoint estimation exhibited better segmentation performance when compared with Mask R-CNN in terms of both qualitative and quantitative results.

A Retail Strategy for the Prosperity of the Art Market within Online Distribution Channel

  • Soomin, HAN
    • 유통과학연구
    • /
    • 제21권3호
    • /
    • pp.113-121
    • /
    • 2023
  • Purpose: Online distribution channel alludes to the many different digital channels utilized in marketing and distributing goods and services to end users. The present research aims to explore and provide various retail strategy for the success of the art market within online distribution channel. Research design, data and methodology: The current author has conducted and investigate the qualitative textual methodology to take a look at carefully the current and prior literature dataset to achieve the purpose of the present research so that the present author could obtain total 27 relevant prior studies. Results: According to the comprehensive literature investigation, this research has found that there are six kinds of retail strategy for the prosperity of the art market within online distribution channel as follows: (1) Blockchain Technology, (2) Artificial Intelligence (AI), (3) Virtual Reality (VR), (4) Online Market Places, (5) Social Media, and (6) Regulations. Conclusions: The results of this analysis of the relevant literature show that the art market industry needs to adjust to keep up with the quickly shifting landscape of the digital world. In addition, although these technologies can be helpful in addressing difficulties linked to authenticity and transparency, they cannot eliminate the hazards of fraud and misrepresentation.

네트워크 이상행위 탐지를 위한 암호트래픽 분석기술 동향 (Trends of Encrypted Network Traffic Analysis Technologies for Network Anomaly Detection)

  • 최양서;유재학;구기종;문대성
    • 전자통신동향분석
    • /
    • 제38권5호
    • /
    • pp.71-80
    • /
    • 2023
  • With the rapid advancement of the Internet, the use of encrypted traffic has surged in order to protect data during transmission. Simultaneously, network attacks have also begun to leverage encrypted traffic, leading to active research in the field of encrypted traffic analysis to overcome the limitations of traditional detection methods. In this paper, we provide an overview of the encrypted traffic analysis field, covering the analysis process, domains, models, evaluation methods, and research trends. Specifically, it focuses on the research trends in the field of anomaly detection in encrypted network traffic analysis. Furthermore, considerations for model development in encrypted traffic analysis are discussed, including traffic dataset composition, selection of traffic representation methods, creation of analysis models, and mitigation of AI model attacks. In the future, the volume of encrypted network traffic will continue to increase, particularly with a higher proportion of attack traffic utilizing encryption. Research on attack detection in such an environment must be consistently conducted to address these challenges.

KoCED: 윤리 및 사회적 문제를 초래하는 기계번역 오류 탐지를 위한 학습 데이터셋 (KoCED: English-Korean Critical Error Detection Dataset)

  • 어수경;최수원;구선민;정다현;박찬준;서재형;문현석;박정배;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.225-231
    • /
    • 2022
  • 최근 기계번역 분야는 괄목할만한 발전을 보였으나, 번역 결과의 오류가 불완전한 의미의 왜곡으로 이어지면서 사용자로 하여금 불편한 반응을 야기하거나 사회적 파장을 초래하는 경우가 존재한다. 특히나 오역에 의해 변질된 의미로 인한 경제적 손실 및 위법 가능성, 안전에 대한 잘못된 정보 제공의 위험, 종교나 인종 또는 성차별적 발언에 의한 파장은 실생활과 문제가 직결된다. 이러한 문제를 완화하기 위해, 기계번역 품질 예측 분야에서는 치명적 오류 감지(Critical Error Detection, CED)에 대한 연구가 이루어지고 있다. 그러나 한국어에 관련해서는 연구가 존재하지 않으며, 관련 데이터셋 또한 공개된 바가 없다. AI 기술 수준이 높아지면서 다양한 사회, 윤리적 요소들을 고려하는 것은 필수이며, 한국어에서도 왜곡된 번역의 무분별한 증식을 낮출 수 있도록 CED 기술이 반드시 도입되어야 한다. 이에 본 논문에서는 영어-한국어 기계번역 분야에서의 치명적 오류를 감지하는 KoCED(English-Korean Critical Error Detection) 데이터셋을 구축 및 공개하고자 한다. 또한 구축한 KoCED 데이터셋에 대한 면밀한 통계 분석 및 다국어 언어모델을 활용한 데이터셋의 타당성 실험을 수행함으로써 제안하는 데이터셋의 효용성을 면밀하게 검증한다.

  • PDF

FCDD 기반 웨이퍼 빈 맵 상의 결함패턴 탐지 (Detection of Defect Patterns on Wafer Bin Map Using Fully Convolutional Data Description (FCDD) )

  • 장승준;배석주
    • 산업경영시스템학회지
    • /
    • 제46권2호
    • /
    • pp.1-12
    • /
    • 2023
  • To make semiconductor chips, a number of complex semiconductor manufacturing processes are required. Semiconductor chips that have undergone complex processes are subjected to EDS(Electrical Die Sorting) tests to check product quality, and a wafer bin map reflecting the information about the normal and defective chips is created. Defective chips found in the wafer bin map form various patterns, which are called defective patterns, and the defective patterns are a very important clue in determining the cause of defects in the process and design of semiconductors. Therefore, it is desired to automatically and quickly detect defective patterns in the field, and various methods have been proposed to detect defective patterns. Existing methods have considered simple, complex, and new defect patterns, but they had the disadvantage of being unable to provide field engineers the evidence of classification results through deep learning. It is necessary to supplement this and provide detailed information on the size, location, and patterns of the defects. In this paper, we propose an anomaly detection framework that can be explained through FCDD(Fully Convolutional Data Description) trained only with normal data to provide field engineers with details such as detection results of abnormal defect patterns, defect size, and location of defect patterns on wafer bin map. The results are analyzed using open dataset, providing prominent results of the proposed anomaly detection framework.

트랜스포머 기반 MUM-T 상황인식 기술: 에이전트 상태 예측 (Transformer-Based MUM-T Situation Awareness: Agent Status Prediction)

  • 백재욱;전성우;김광용;이창은
    • 로봇학회논문지
    • /
    • 제18권4호
    • /
    • pp.436-443
    • /
    • 2023
  • With the advancement of robot intelligence, the concept of man and unmanned teaming (MUM-T) has garnered considerable attention in military research. In this paper, we present a transformer-based architecture for predicting the health status of agents, with the help of multi-head attention mechanism to effectively capture the dynamic interaction between friendly and enemy forces. To this end, we first introduce a framework for generating a dataset of battlefield situations. These situations are simulated on a virtual simulator, allowing for a wide range of scenarios without any restrictions on the number of agents, their missions, or their actions. Then, we define the crucial elements for identifying the battlefield, with a specific emphasis on agents' status. The battlefield data is fed into the transformer architecture, with classification headers on top of the transformer encoding layers to categorize health status of agent. We conduct ablation tests to assess the significance of various factors in determining agents' health status in battlefield scenarios. We conduct 3-Fold corss validation and the experimental results demonstrate that our model achieves a prediction accuracy of over 98%. In addition, the performance of our model are compared with that of other models such as convolutional neural network (CNN) and multi layer perceptron (MLP), and the results establish the superiority of our model.

지역 중첩 신뢰도가 적용된 샴 네트워크 기반 객체 추적 알고리즘 (Object Tracking Algorithm based on Siamese Network with Local Overlap Confidence)

  • 임수창;김종찬
    • 한국전자통신학회논문지
    • /
    • 제18권6호
    • /
    • pp.1109-1116
    • /
    • 2023
  • 객체 추적은 영상의 첫 번째 프레임에서 annotation으로 제공되는 좌표 정보를 활용하여 비디오 시퀀스의 목표 추적에 활용된다. 본 논문에서는 객체 추적 정확도 향상을 위해 심층 특징과 영역 추론 모듈을 결합한 추적 알고리즘을 제안한다. 충분한 객체 정보를 획득하기 위해 Convolution Neural Network를 Siamese Network 구조로 네트워크를 설계하였다. 객체의 영역 추론을 위해 지역 제안 네트워크와 중첩 신뢰도 모듈을 적용하여 추적에 활용하였다. 제안한 추적 알고리즘은 Object Tracking Benchmark 데이터셋을 사용하여 성능검증을 수행하였고, Success 지표에서 69.1%, Precision 지표에서 89.3%를 달성하였다.

Estimation of the mechanical properties of oil palm shell aggregate concrete by novel AO-XGB model

  • Yipeng Feng;Jiang Jie;Amir Toulabi
    • Steel and Composite Structures
    • /
    • 제49권6호
    • /
    • pp.645-666
    • /
    • 2023
  • Due to the steadily declining supply of natural coarse aggregates, the concrete industry has shifted to substituting coarse aggregates generated from byproducts and industrial waste. Oil palm shell is a substantial waste product created during the production of palm oil (OPS). When considering the usage of OPSC, building engineers must consider its uniaxial compressive strength (UCS). Obtaining UCS is expensive and time-consuming, machine learning may help. This research established five innovative hybrid AI algorithms to predict UCS. Aquila optimizer (AO) is used with methods to discover optimum model parameters. Considered models are artificial neural network (AO - ANN), adaptive neuro-fuzzy inference system (AO - ANFIS), support vector regression (AO - SVR), random forest (AO - RF), and extreme gradient boosting (AO - XGB). To achieve this goal, a dataset of OPS-produced concrete specimens was compiled. The outputs depict that all five developed models have justifiable accuracy in UCS estimation process, showing the remarkable correlation between measured and estimated UCS and models' usefulness. All in all, findings depict that the proposed AO - XGB model performed more suitable than others in predicting UCS of OPSC (with R2, RMSE, MAE, VAF and A15-index at 0.9678, 1.4595, 1.1527, 97.6469, and 0.9077). The proposed model could be utilized in construction engineering to ensure enough mechanical workability of lightweight concrete and permit its safe usage for construction aims.

Real-Time CCTV Based Garbage Detection for Modern Societies using Deep Convolutional Neural Network with Person-Identification

  • Syed Muhammad Raza;Syed Ghazi Hassan;Syed Ali Hassan;Soo Young Shin
    • Journal of information and communication convergence engineering
    • /
    • 제22권2호
    • /
    • pp.109-120
    • /
    • 2024
  • Trash or garbage is one of the most dangerous health and environmental problems that affect pollution. Pollution affects nature, human life, and wildlife. In this paper, we propose modern solutions for cleaning the environment of trash pollution by enforcing strict action against people who dump trash inappropriately on streets, outside the home, and in unnecessary places. Artificial Intelligence (AI), especially Deep Learning (DL), has been used to automate and solve issues in the world. We availed this as an excellent opportunity to develop a system that identifies trash using a deep convolutional neural network (CNN). This paper proposes a real-time garbage identification system based on a deep CNN architecture with eight distinct classes for the training dataset. After identifying the garbage, the CCTV camera captures a video of the individual placing the trash in the incorrect location and sends an alert notice to the relevant authority.