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Support Vector Machine Model to Select Exterior Materials1)
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Abstract

Choosing the best-performance materials is a crucial task for the successful completion of a project in the 

construction field. In general, the process of material selection is performed through the use of information by a highly 

experienced expert and the purchasing agent, without the assistance of logical decision-making techniques. For this 

reason, the construction field has considered various artificial intelligence (AI) techniques to support decision systems 

as their own selection method. This study proposes the application of a systematic and efficient support vector 

machine (SVM) model to select optimal exterior materials. The dataset of the study is 120 completed construction 

projects in South Korea. A total of 8 input determinants were identified and verified from the literature review and 

interviews with experts. Using data classification and normalization, these 120 sets were divided into 3 groups, and 

then 5 binary classification models were constructed in a one-against-all (OAA) multi classification method. The 

SVM model, based on the kernel radical basis function, yielded a prediction accuracy rate of 87.5%. This study 

indicates that the SVM model appears to be feasible as a decision support system for selecting an optimal construction 

method.

Keywords : exterior material, one-against-all, support vector machine

1. Introduction

Materials account for a very large percentage of 

building costs. More than 50~60% of total cost of 

project has spent on the work relevant to materials 

[1]. In the past, the material process is a simple 

task in which limited conventional materials, such as 

stone and brick, of selecting materials, are 

considered. However, the rapid developments of 

construction method and raw materials have 

transmuted the skin of buildings sharply. According 

to Farag[2], about 4,000 metallic alloys and over 
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5,000 numbers of plastic, ceramics, glasses have 

been used in the material market in construction 

field. For this reason, designers and engineers often 

face the problems of selecting materials from vast 

alternatives with consideration of building 

constraints [3].

In general, the material work at early stage is 

concerned with core information of project, such as 

duration, structure type, design and cost, to 

determine the quality of overall building [4,5]. 

Additionally, material selection has affected the 

environment, lead to greenhouse emissions via their 

careless exploitation and transportation [6]. As such, 

this process is a crucial topic in construction work 

scope. In spite of the gravity of selecting materials, 

the process of selecting materials is often neglected 

in work process and considered by the purchasing 

agent when assessing total cost of project [7]. The 
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reason is that selection of the best-performance 

materials is a complex task due to the vast range of 

considerations: environmental impact, design 

suitability and changing of total cost [3]. For this 

reason, the selection of a material method is nearly 

based on opinion from highly experienced 

practitioner, who has scope to deal with the 

extensive material expertise relevant to project. 

However, such illogical decision-making or passive 

process could have negative effect on the entire 

project. The inappropriate selection of materials prior 

to construction can contribute to decrease quality 

and completion degree of project. Therefore, 

considering that construction field needs supporting 

systems with their own material selection methods.

In order to escape such a rule of thumbs of the 

construction method, Artificial intelligence (AI) 

techniques are widely used as a support application 

to assist engineers’ decision making by conducting 

a great deal of study in construction industry over 

the past few decades [8]. For instance, at early 

stage of project, the construction cost estimates, 

which is influenced by a wide range of factors, has 

been assessed by various AI techniques. Especially, 

artificial neural network (ANN), adaptive boosting 

algorithms (AdaBoost) and case-based reasoning 

(CBR) have been regarded as a representative 

technique of AI in construction process [9].

Although such applications of AI techniques are 

popular in the construction field as support 

programs, they still have limitations like the lack of 

self-learning and time consumption mechanism [10]. 

ANN is one of the AI techniques to predict [10], 

classify [11] and select approximate data [12] in 

construction field. However, ANN requires higher 

trial and error processing time in order to structure 

network due to the fact that ANN basically depends 

on liner regression so that it is not appreciate when 

applying non-liner relationships [13]. In terms of 

Adaboost, recently, it is a notable classifier because 

of its effective feature selection, generalization 

performance and low computational costs [14]. Still, 

it has demerit that every feature leads to one 

decision so that dependencies between features 

cannot be utilized well even though it provides a 

successful learning algorithm and has strong 

boundary of generalization [15]. CBR is an 

alternative to an expert system, which relies on 

rule-based reasoning. CBR has limitation to reflect 

suitable current criteria to index and match due to 

depending on previous experience without validating 

it in the new situation [16]. This is an apparent 

problem in changing property of object that past 

cases may not reflect current object trends.

Among recent AI techniques, SVM has received 

attention due to its excellent capacity for 

self-learning and generalization performance in 

comparison to other AI techniques [17]. In 

particular, the function of SVM generalization and 

classification is sharply better than previous 

techniques by simultaneously determining the 

problems of two classes [18]. Existing AI techniques 

need various factors to calculate for optimal function 

through trial and error with a higher process time. 

Such complicated algorithm process is not suitable to 

deal with the wide range of data in spelling over the 

varieties inside given classes. However, SVM is able 

to detect the optimal function through via the 

nonlinear mapping of input vectors into a higher 

dimension feature space (kernels), without any 

knowledge of the mapping [19]. Thus, SVM has been 

shown higher performance to solve large sample size 

problems in comparison to conventional AI 

techniques with minimizing running time [20]. For 

this reason, it can be applied to practice fields such 

as human face detection [17], nonlinear time series 

predictions [21] and dynamic reconstruction of a 

chaotic system [22].

This study proposes the application of a systematic 

and efficient model to support process of selecting 
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exterior material of the building. Firstly, the theory 

of SVM is briefly reviewed. The potential of SVM 

model is presented and demonstrated by applying a 

real data set from South Korea construction market 

in next chapter, and then the results of proposed 

SVM model are evaluated with output data obtained 

from ANN and CBR in “Result”. Finally, 

conclusions and suggestions for further study are 

presented. 

2. Support Vector Machine

2.1 SVM Approach

The SVM has been developed principally by Vanpik 

and his collaboration at Bell Laboratories in 1992 

[23]. The principle of SVM is based on statistical 

learning theory and the structural risk minimization, 

which has shown to deliver higher performance than 

traditional empirical risk minimization used by many 

of the learning machines [17]. The SVM is originally 

designed for binary classification in order to 

construct an optimal hyper-plane so that the margin 

of separation between two classes, negative and 

positive, could be maximized [24]. If the data are 

linearly separated, SVM can trains liner machines to 

estimate optimal hyper-plane for separating the data 

without error into the maximum distance between 

the hyper-plane and the nearest target points. In 

terms of non-linear case, SVM provides 

classification boundary via specific nonlinear 

mapping the input vectors into high dimensional 

space. In this sense, the SVM has advantages 

including strong inference capacity, greater 

generalization ability and less learning time 

compared to the other learning techniques [22].

2.2 Theory of SVM

Consider the problem of separating the set of 

training set {(xi,yi)}
l
i=1, where xi∈Rd is the ith input 

vector and yi∈{-1,1}, i=1,…,l is the associated label, 

with yi=1 for class 1 (positive value), and yi=-1 

(negative value) for class 2. According to Vapnik[23] 

the separate hyper-plane, which separates the 

training datum linearly, can be formulated as

   yi (xi·w+b) ≥ 1      i=1,2,…,l              (1)

Where a specific pair (w,b) is inner product of two 

vectors; w=weight vector to the hyper-plane that 

separates the positive value from the negative cases; 

and b=scalar. For the case a two-dimensional input 

space as shown Fig. 1(a), there are many possible 

liner classifiers that can separate the data. However, 

there is only one maximum “margin” that is the 

distance between the separating hyper-plane and the 

training datum, the nearest to the hyper-plane. This 

linear classifier is termed the optimal hyper-plane. 

The SVM training aims to find the linear separating 

hyper-plane that gives the maximum margin 

between two hyper-planes (xi·w+b-1=0 and 

xi·w+b+1=0) in order to maximize generalization 

performance. The margin of separation between two 

classes can be shown to be one that minimizes the 

functional according to Cristianini and Shawe-Tayler 

[25]:

Minimize 

2

( )
2

w
wΦ =                            (2)

where the cost function Φ(w) is a convex function 

of w and the constraints are linear in w. This 

optimization problem can be switched to a 

Lagrangian formulation [26] as follow:

Maximize 1

1 [ ( ) 1]
2

i

p i i i
i

L w w y w x bα
=

= ⋅ − ⋅ − −∑

Subject to 1
0

i

i i
i

yα
=

=∑  and 0,iα ≥
 
i = 1,2…,l     (3)

The objective function Lp and aiding non-negative 

variables α are the Lagrange Multiplier, and then 

the w could be stated
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i
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w y xα
=
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In addition, the optimal hyper-plane can be 

formulated by Kűhn-Tucker theorem as follow:

     i=1, k, l                (5)

If points xi are not located on hyper-plane, 

0iα =  must be satisfied. Those points xi are called 

the “support vector”. Therefore, Eq(5) can be 

re-defined

i i i
support 
vector

w y xα= ∑

                                  
   (6) 

In this sense, the optimal hyper-plane is located 

on a linear combination of the support vectors.

Figure 1. Optional separating hyper-plane [19]

In terms of non-separable data, SVM is applied 

by introducing a new positive slack variables ζi 

(i=1,..,N) in order to be sufficiently tolerant of 

classification errors, as shown in Fig. 2(b). It can be 

rearranged to Eq. (1) as follow:

( ) 1 ξi i iy x w b⋅ + ≥ − ,  i=1, k, l                (7)

To obtain the optimal separating hyper-plane, it 

can be expressed as follow:

Minimize   1

1( ,ξ) ξ
2

i

i
i

L w w w C
=

⎛ ⎞
= ⋅ − ⎜ ⎟

⎝ ⎠
∑            (8)

 where C=user-specified parameter that controls 

trade-off between the complexity model and the 

minimization of the classification error. 

In the case where the decision function is not a 

linear function of the data, the SVM can map the 

input vectors X∈Rd into a high dimensional space, 

where is called as the feature space (Fig. 2), Z via 

nonlinear mapping Φ:Rd→Rd(D≫d). Thus, this 

quadratic optimization problem can be solved by 

maximizing the quadratic form

1 , 1

1 ( )
2

l l

D i i j i j i j
i i j

L y y K x xα α α
= =

= − ⋅∑ ∑               (9)

where K(xi·xj) is kernel function. It is dispensable 

to deal with the feature space, reduce the amount of 

consumption and straightforwardly extend feature 

space. A kernel function should follow this condition 

known as the function satisfying Mercer’s thermo 

(Mercer, 1909).

Figure 2. Desired accuracy ɛ and slack variable ξ [23]

In order to solve equation determinants of 

Lagrange multipliers and implement the optimal 

separating hyper-plane in the feature space is given 

by

0
0

1
( ) sgn ( )

l

i i
i

f x y K x x bα
=

⎛ ⎞
= ⋅ +⎜ ⎟

⎝ ⎠
∑                      (10)

Figure 3. Mapping input data into the feature space [28]
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Consequently, everything has been described about 

the linear is applied to nonlinear cases by using a 

suitable kernel K instead of the dot product (Fig. 3). 

The SV algorithm can construct a variety of learning 

machines by using different kernel functions (Fig. 

4), some of which coincide with classical 

architectures.

Figure 4. Architecture of SVM

Generally, three kinds of function have been used 

among other providing acceptable kernels. Respective 

kernel functions are described as follows:

· Polynominal kernel: K(xi·xj)=(xi·xj+1)n           

(11)

where the degree of the polynominal n is 

user-defended value.

· Radical basis function: K(xi·xj)=exp(-γ∥(xi·xj)∥
2)     

(12)

Where γ is user-defined value.

· Two-layer neural networks (Sigmodi):

K(xi·xj)=than(kxi·xj-δ)n                       

(13)

where k and δ are user-defined value. 

3. Datasets Construct

3.1 Determinants for selection of finishing materials

Basically, the variables to use for selecting 

exterior materials were determined in two steps in 

this study. The variables candidates to influence the 

selecting material were initially made by reviewing 

previous studies [3,5,7,29,30]. In second step, 

selected factors were verified and evaluated via 

interviewing seventeen experts who have been highly 

experienced practitioners in the construction field in 

South Korea. Consequently, eight factors for 

selecting an exterior material were determined. Table 

1 shows an outcome of determinants for Selection of 

Materials. In terms of total cost is converted based 

on Building Cost Index (BCI) in 2005.

Table 1. Determinants of materials (input variables)

Factor Type of factor
Remarks

Max. Min.

Location Nominal Seoul, Daejun, Busan 

Site area(㎡) Numerical 151,134 2,912

No. of story(EA) Numerical 45 9

Structure system Nominal RC, SRC

Gross area(1,000㎡) Numerical 497,677 3,078

Duration(months) Numerical 75 12

Total cost(1,000won) Numerical 497,041,815 851,300

Material cost(won/㎡) Numerical 350,000 165,000

The outcomes of input variables were normalized 

for controlling the number of group size and 

applying SVM model. The outcome of input variables 

was re-coded in the range of “0” to “1” due to 

the fact that the range of gross area outcome is 

comprehensive in comparison with the story of 

building or the duration of construction [31]. In 

terms of text variable, such as structure system, 

sorted by the number of type in the same scope 

(e.g, RC:1, SRC:0).

3.2 Data construction

The 120 completed construction projects in urban 

areas of South Korea were collected from 

well-known companies. The boundary of dataset was 

limited to exterior materials within apartment during 

the period from 2000 to 2008. In order to carry out 

SVM model, collected data is split into three sets in 
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the ratio 66% (Training set), 17% (Validation set) 

and 17% (Test set) via random selection. “Training 

set” is consisted of water paint (32EA), aluminum 

panel (31EA), stainless panel (8EA), granite (7EA) 

and wood panel (2EA) according to the number of 

selected material in data. The results of selecting 

materials were classified into 5 classes: Water paint, 

Al panel, Stainless panel, Granite, Wood panel, 

which are representative used material on 

construction site, as shown in Table 2.

Table 2. Composition of dataset

Class No. Training Validation Test

Water Paint 50 32 9 9

Aluminum Panel 43 31 6 6

Stainless Panel 12 8 2 2

Granite 11 7 2 2

Wood panel 4 2 1 1

Total 120 80 20 20

3.3 SVM for selecting material

3.3.1 One-Against-All (OAA)

In this study, the SVM model was created by 

SVMdark [32] which is based on SVMlight version 

[33]. SVM model was applied to real data sets for 

selecting exterior material in “Test set”. 

Originally, SVM was designed for binary 

classification (2 classes) but cannot naturally extend 

to more than two classes. However, given data 

(selected material in cases) was divided into 5 

classes. To escape this problem, the SVM model 

needs to be extended for multiple classifications. 

“One-Against-All (OAA)” and “Pairwise” have 

been used as conventional ways to extend the SVM 

model for multiple scenarios [24]. In both ways, the 

OAA classific ation method is the earliest and one of 

most widely used implementations [34]. For this 

reason, this study constructs the SVM model on the 

OAA method. The OAA principle is as follow: 

In the SVM, suppose the ith decision function, 

with the maximum margin, that classifies class i 

and the remaining classes be formulated 

Di(x)=wi
tx+bi                               (14)

where wi is the m-dimensional vector and bi is a 

scalar.

The hyperplane Di(x)=0 forms the optimal 

separating hyperplane and, if the training data are 

linearly separable, Di(x)=1 and those belonging to 

the remaining classes satisfy Di(x)=-1. For the 

conventional SVM, if for the input vector x

Di(x) > 0                                  (15)

3.3.2 Proposed classification model

In order to classify 5 classes, the SVM model 

could be extended according to the OAA 

classification method as mentioned above. This study 

has proposed four Binary Classifications (BC) to 

apply the SVM model. At the Class 1 BC, Class 1 

and rest class (Class 2 to Class 5) were grouped, 

Class 1 belongs to the positive set (target value: +1) 

and four classes belong negative set (target value: 

-1). Along the same way, the rest Classes were 

grouped in series. The proposed classification model 

was designed to preferentially select material which 

is often used in the given cases. Thus, each 

classification (Class 1 to Class 5) can group into 

water paint, aluminum panel, stainless panel, 

granite and wood panel in order.

4. Result

In order to structure SVM model, optimal kernel 

function and related hyper-parameters need to be 

determined respectively in the regression part of the 

SVMdark. 5 BC are tested in four kernel functions: 

linear, polynominal, radical basis and sigmoid. The 

result of preliminary tests showed that a polynominal 

function was chosen as the optimal kernel function, 
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which showed the lowest Mean Squared Error, for 

discrete BC. Then the hyper-parameters that 

contribute to the best performance in SVM model are 

determined. Table 3 shows the best kernel functions 

and hyper-parameters in respective BC by the 

regression process with 50 runs in SVMdark.

Table 3. Output of optimal parameters for respective binary 

classifiers

Model Kernel D S C

Water Paint-BC Polynominal 2 3 2

Aluminum panel-BC Polynominal 3 1 4

Stainless panel-BC Polynominal 2 1 2

Granite-BC Polynominal 5 1 5

Wood panel-BC Polynominal 4 1 3

■ Note. D: Number of degree; S: Sines; C: Cosines

Table 4. Comparison of result with actual dataset (Fold 1)

Objective WP-
BC

AP-
BC

SP-
BC

Gr-B
C 

WDP
-BC

Result

Water 
Paint

1.08 -1.14 -2.81 -0.85 -5.71 Water Paint

Water 
Paint

1.14 -1.12 -5.10 -0.98 -4.99 Water Paint

Water 
Paint 0.98 -1.11 -3.38 -1.09 -5.49 Water Paint

Water 
Paint 1.03 -0.18 -2.99 -1.41 -5.78 Water Paint

Water 
Paint

1.25 -1.09 -2.87 -1.68 -5.83 Water Paint

Water 
Paint

1.28 -1.18 -2.87 -1.78 -5.79 Water Paint

Water 
Paint

1.02 -1.00 -2.91 -0.84 -5.92 Water Paint

Water 
Paint

0.99 -0.97 -3.49 -1.00 -5.96 Water Paint

Water 
Paint

1.11 -0.88 -3.40 -0.83 -6.00 Water Paint

Aluminum 
Pnl

-1.15 1.52 -0.98 -0.05 -5.30 Aluminum 
Pnl

Aluminum 
Pnl

-1.02 0.96 -3.67 -0.62 -3.89 Aluminum 
Pnl

Aluminum 
Pnl -1.02 1.07 -2.91 -0.53 -3.92

Aluminum 
Pnl

Aluminum 
Pnl

-1.17 1.21 -3.30 -0.82 -5.03 Aluminum 
Pnl

Aluminum 
Pnl

-1.84 -2.99 -1.00 3.22 -5.05 Granite

Aluminum 
Pnl -1.39 1.56 -1.22 -1.42 -5.14

Aluminum 
Pnl

Stainless 
Pnl -3.44 -1.32 0.37 -2.13 -4.00

Stainless 
Pnl

Stainless 
Pnl

-4.14 -1.83 -0.87 -0.92 1.34 Wood Pnl

Granite -5.97 -7.3 -2.42 0.07 -2.60 Granite
Granite -5.99 -7.4 -2.34 -0.32 3.04 Wood Pnl

Wood Pnl -9.12
-20.3
6

-2.36 -1.39 1.49 Wood Pnl

■ Note. Grey hatch : no matched result

Figure 5. Accuracy of respective binary classifiers (Fold 1)

In classification part of SVMdark, determined 

kernel functions and hyper-parameters are used to 

select exterior material in dataset. For example, the 

results of fold 1 reported in Table 4. The accuracy 

was measured by the percentage of matching 

correctly classified in 5 BC. The overall accuracy of 

the SVM model was 85% in training data (fold 1). In 

terms of respective BC, the prediction performance 

of 5 classifications was slightly different. Water 

Paint (WP)-BC ranked first with 100% in total 

classifications. The lowest rank was occupied by 

Wood Panel (WDP)-BC, rest classifications 

(Aluminum Panel, Stainless Panel and Granite 

classification) were 95% as same position. The result 

showed that WP-BC superiorly performs compared to 

other BC in dataset, are given in Fig. 5. 

Consequently, WP-BC and AP-BC, which relatively 

have a great deal of cases, have shown the higher 

accuracy than WDP-BC formed small case in the 

given data. The number of case can influence on the 

accuracy of respective BC in the decision making 

process. Thus, it can be expected that the overall 

accuracy percentage of BC will be improved with 

increasing the number of input data in respective 

class.
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Table 5. Result of six-fold cross-validation

Experiment Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6

Number of
incorrect 
cases

3 3 4 1 2 2

Accuracy
rate (%)

85 85 80 95 90 90

The classification results of 5 BC were compared with 

the actual result in datasets to evaluate the performance 

of the SVM model, k-fold cross-validation was also 

adopted using the same hyperparameter of the 

polynomial function. Table 5 shows the results of 

six-fold cross-validation to evaluate the performance of 

the SVM model. Overall, the average accuracy was 

87.5%, with a minimum of 80% and a maximum of 95%. 

In these respects, SVM, which has simple process 

to construct various parameters, model could be 

verified as a superior technique to select material.

5. Conclusion

This study has proposed a new model for selecting 

exterior material based on the SVM in order to 

examine the applicability and potential of SVM in 

construction field. In the experiment, actual case 

data from 120 completed projects in South Korea 

was divided into five classes with normalizing 

process to carry out the SVM model; and arranged 

respective classes were used for constructing BC on 

OAA classification method. In addition, the SVM 

model showed higher performance to determine 

parameters with the less processing time. These 

results demonstrated that the SVM model could be 

assistance for decision maker to select 

high-performance material in construction field. In 

the future, the SVM can serve as a technique for 

determining optimal construction method in company 

know-how system, at early stage.

Likewise, SVM model in this study showed 

validation and potential to apply in construction 

field. Further study, still, is necessary to improve 

SVM model for application to practical field. As 

mentioned above, the accuracy of SVM model is 

affected by the number of cases in dataset so that 

further study will carry out in more than 120 

dataset in order to expect higher accurate. In 

addition to this data supplementation, the statistical 

verification will be proposed to determine crucial 

factors considered in selecting materials. Such 

considerations will make SVM superiorly come up to 

construction field.
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