• 제목/요약/키워드: AI 지식

검색결과 276건 처리시간 0.026초

초등교육에서 인공지능 프로그래밍을 활용한 환경교육 적용 방법 (Methods for Implementing Environmental Education in Elementary Schools by using AI Programming)

  • 이용배
    • 한국정보교육학회:학술대회논문집
    • /
    • 한국정보교육학회 2021년도 학술논문집
    • /
    • pp.309-314
    • /
    • 2021
  • 현재 폭염, 폭설, 폭우 등의 환경재해가 급증하면서 환경교육에 대한 관심이 늘어나고 있는 상황이지만 일선 초등학교에서는 환경교육에 대한 의무감이 부족하고 재정지원 부족과 학습자료 부족으로 수업이 직접적으로 실행되기는 어려운 상황이다. 본 연구는 초등학교에서 환경교육 분야 중 분리배출에 대한 내용을 학생들에게 학습시키고 인공지능 프로그래밍을 활용해 종이, 유리, 플라스틱, 페트, 금속 등의 분리배출에 대한 판단력을 보완하고자 하였다. 프로그램에 참여한 학생들의 설문결과, 인공지능 프로그래밍을 학습하고 활용하면서 분리배출에 대한 지식 획득과 분리배출 이해에도 70%이상 긍정적으로 도움을 받은 것으로 나타났다. 또한 인공지능 의미에 대한 이해도가 확대되었고 앞으로 기회가 된다면 인공지능 프로그래밍을 더 배우고 싶다고 하였다.

  • PDF

혁신취업·창업을 위한 스마트멘토링 플랫폼 활용

  • 홍창영;차상현;노창균
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2021년도 추계학술대회
    • /
    • pp.167-169
    • /
    • 2021
  • 친환경 스마트 선박 핵심인력 양성 및 사업화 기술개발의 취업·창업 산학연결 플랫폼, 민간 전문가가 직접 멘토로 참여하도록 유도한다. 멘티는 취업하고자 하는 분야의 전문가를 매칭 또는 선택을 통한, 효과적인 멘토링 실현하고 이해관계 자간의 멘토링을 통해서, 취업과 창업으로 바로 연결될 수 있도록 활성화 시킨다. 멘토·멘티간의 멘토링 지식 빅데이터 수집을 통한, AI 스마트 멘토링 제공하고 멘토와 멘토의 맞춤/화상/AI 멘토링, 멘토링 성과관리, 시스템을 제공한다.

  • PDF

TPACK과 기술수용모델을 활용한 초등교사의 수학 수업에서 인공지능 사용 의도 이해 (Understanding Elementary School Teachers' Intention to Use Artificial Intelligence in Mathematics Lesson Using TPACK and Technology Acceptance Model)

  • 손태권;구종서;안도연
    • 한국수학교육학회지시리즈C:초등수학교육
    • /
    • 제26권3호
    • /
    • pp.163-180
    • /
    • 2023
  • 본 연구는 AI를 수학 수업에 사용하려는 초등학교 교사의 의도에 미치는 요인들에 대해 살펴보고 수학 수업에서 AI가 효과적으로 사용되기 위해 선행되어야할 요인을 제시하고자 하였다. 이를 위해 기술수용모델(Technology Acceptance Model)을 사용하여 초등학교 교사의 TPACK과 TAM 사이의 구조적 관계를 조사하였다. 그 결과, 초등학교 교사들의 TPACK은 인지된 사용 용이성과 유용성에 유의미한 영향을 미쳤다. 또한 인지된 사용 용이성과 인지된 유용성은 수학 수업에서 AI 활용에 대한 태도에 유의미한 영향을 미쳤다. 인지된 사용 용이성, 인지된 유용성, 태도는 수학 수업에서의 AI 사용 의도에 유의미한 영향을 미치는 것으로 나타났다. 이러한 결과는 초등학교 교사들이 수학 수업에서 AI에 대한 TPACK 역량이 높다고 인식할수록 수학 수업에서 AI를 사용하기가 더 쉽고 AI가 학생의 수학 학습 향상에 도움이 되는 유용한 도구로 인식할 수 있음을 의미한다. 또한 수학 수업에서 AI가 쉽게 사용할 수 있고 유용하다고 인식할수록 AI 사용 의도가 높아질 수 있다. 따라서 초등학교 교사들이 수학 수업에서 AI의 활용하려면 TPACK에 관한 지식 교육이 선행되어야하며, 수학 수업에서 AI 사용의 이점과 편리성에 대한 인식 개선이 함께 이루어져야 한다.

AI 컴포넌트 추상화 모델 기반 자율형 IoT 통합개발환경 구현 (Implementation of Autonomous IoT Integrated Development Environment based on AI Component Abstract Model)

  • 김서연;윤영선;은성배;차신;정진만
    • 한국인터넷방송통신학회논문지
    • /
    • 제21권5호
    • /
    • pp.71-77
    • /
    • 2021
  • 최근 이질적인 하드웨어 특성을 고려한 IoT 응용 지원 프레임워크의 효율적인 프로그램 개발이 요구되고 있다. 또한, 인간의 뇌를 모사하여 스스로 학습 및 자율적 컴퓨팅이 가능한 뉴로모픽 아키텍처의 발전으로 하드웨어 지원의 범위가 넓어지고 있다. 하지만 기존 대부분의 IoT 통합개발환경에서는 AI(Artificial Intelligence) 기능을 지원하거나 뉴로모픽 아키텍처와 같은 다양한 하드웨어와 결합된 서비스 지원이 어렵다. 본 논문에서는 2세대 인공 신경망 및 3세대 스파이킹 신경망 모델을 모두 지원하는 AI 컴포넌트 추상화 모델을 설계하고 제안 모델 기반의 자율형 IoT 통합개발환경을 구현하였다. IoT 개발자는 AI 및 스파이킹 신경망에 대한 지식이 없어도 제안 기법을 통해 자동으로 AI 컴포넌트를 생성할 수 있으며 런타임에 따라 코드 변환이 유연하여 개발 생산성이 높다. 제안 기법의 실험을 진행하여 가상 컴포넌트 계층으로 인한 변환 지연시간이 발생할 수 있으나 차이가 크지 않음을 확인하였다.

신약개발에서의 AI 기술 활용 현황과 미래 (Present Status and Future of AI-based Drug Discovery)

  • 정명희;권원현
    • 한국정보통신학회논문지
    • /
    • 제25권12호
    • /
    • pp.1797-1808
    • /
    • 2021
  • 4차 산업혁명을 주도하는 기술 중 가장 핵심적인 기술로 꼽히고 있는 인공지능은 다양한 분야에 접목되면서 우리 사회 전반에 걸쳐 패러다임의 전환을 가져오고 있다. 바이오 분야 역시 예외는 아니어서 컴퓨터, 전기·전자, 기계 등 타 학문과 융합되면서 방대한 데이터 기반의 AI 기술을 도입하고 있다. 신약개발에서 AI 기술 도입은 신약개발의 효율성을 개선하고 효능 및 품질 향상을 가져올 수 있다. 신약개발은 다학제 분야가 접목된 융합 분야이고 개발 과정 단계별로 결과의 불확실성이 존재하고 있어 실용적 수준의 신약 개발을 위해서는 화학, 생물학, 독성학, 약동학 등 전문지식의 융합을 기반으로 하는 AI 기술 개발이 필요하다. 신약개발은 크게 주어진 질병에 대한 타겟 물질 발굴 및 검증, 히트 및 선도물질 발굴, 도출된 화합물에 대한 합성 가능성 및 효능 등에 대한 평가(Scoring)를 거쳐 최적의 신약 후보 물질을 발굴하고 마지막으로 전임상과 임상 과정의 단계를 거친다. 이때 AI 기술은 모든 단계에서 적용될 수 있고 단계마다 특화되어 적용될 수 있다. 본 논문에서는 신약개발을 위해 적용되고 있는 AI 기술 현황과 현재 기술의 한계를 살펴보고 향후 신약개발에서 AI 기술의 발전 방향을 고찰해 보고자 한다.

화장품 회사의 빅데이터분석을 통한 브랜드컨셉 개발 사례분석 (A Case Study on the Development of New Brand Concept through Big Data Analysis for A Cosmetics Company)

  • 이주민;방정혜
    • 지식경영연구
    • /
    • 제21권3호
    • /
    • pp.215-228
    • /
    • 2020
  • 본 연구는 경쟁이 심한 화장품 시장에 새롭게 뛰어들어 빅데이터 분석을 활용하여 브랜드 컨셉을 개발한 기업의 사례를 소개하고 있다. 안티에이징 관련 좋은 원재료 기술을 보유한 스킨리버스랩은 기능성화장품 시장에 새롭게 브랜드를 출시하였다. SNS 데이터를 화장품에 대한 소비자 태도, 기능성화장품에 대한 소비자 태도, 기능성화장품의 대표 경쟁사 분석, 소비자의 제품 사용 경험 등의 4가지 측면에서 분석하여 로지컬리스킨이라는 매력적인 브랜드 컨셉을 개발하였다. AI 기반 빅데이터 분석 툴인 루미노소를 이용하여 맥락 기반의 감성분석, 연관어 분석, 워드클라우드 분석 등을 통해 소비자에 대한 인사이트를 도출하였다. 로지컬리스킨은 유명잡지나 앱에서 다수의 상을 수상하며 글로벌 트랜드 기준에 부합한 제품으로 인정을 받았고, 미국, 홍콩을 포함한 6개 국가에 진출하였다. 로지컬리스킨 사례는 외부 데이터 만으로 소비자 인사이트를 도출하여 신생 기업이 신규 브랜드로 시장에 진출한 사례이며, AI 기반 감성 분석을 적용한 사례로서 의의가 있다.

빅데이터 지식처리 인공지능 기술동향 (Technology Trends of AI for Big Data Knowledge Processing)

  • 이형직;류법모;임수종;장명길;김현기
    • 전자통신동향분석
    • /
    • 제29권4호
    • /
    • pp.30-38
    • /
    • 2014
  • 최근의 플랫폼 기술동향은 웹 기반 혹은 단순 의사소통이 가능한 모바일 플랫폼에서 빅데이터와 인공지능기술이 접목되면서 심층 질의응답이 가능한 차세대 지능형 지식처리 플랫폼으로의 진화가 진행 중이다. 선진국에서는 국가 차원 혹은 글로벌 기업의 주도하에 대형 장기 프로젝트가 진행 중이다. 국가 주도의 프로젝트로는 미국의 PAL, 유럽의 Human Brain, 일본의 Todai 프로젝트가 대표적인 예이며, 글로벌 기업의 경우는 IBM의 Watson, Google의 Knowledge Graph, Apple의 Sir가 대표적인 예이다. 본고에서는 차세대 지능형 플랫폼의 핵심기술인 인간과 기계의 지식소통을 위한 빅데이터 기반의 지식처리 인공지능 소프트웨어 기술의 개념과 국내외 기술 및 산업, 지식재산권 동향 등을 살펴보고 산업계 활용방안 및 발전방향에 대해 논하고자 한다.

  • PDF

패턴인식을 위한 신경망-지식기반융합모델-IPP(Intelligent Processing of Pattern) 모델

  • 이광로;장명욱;박치항;이훈복
    • ETRI Journal
    • /
    • 제14권4호
    • /
    • pp.125-136
    • /
    • 1992
  • 일반적으로 사람이 패턴인식을 하는 데 있어서 여러 단계의 과정을 거쳐 인식함이 알려져 있다. 이와 같은 사람의 패턴인식 메카니즘(mechanism)을 모방하여 각 단계에 해당하는 기능을 수행하는 시스팀의 구성은 계층구조를 가짐은 물론 각각의 계층의 지식 또한 모듈화 되어야 한다. 특히 계층간의 지식이 상호작용을 통하여 지식이 처리되어야 할 것이다. 본 연구에서는 기존의 패턴인식 모델이 가지고 있는 문제점을 해결하기 위하여 인간의 패턴 인식 메카니즘에 대해 많이 알려진 여러가지 가설을 바탕으로 신경망 패턴인식 모델과 AI 패턴인식 모델을 융합한 새로운 IPP 모델을 제안한다. IPP 모델은 패턴을 인식할때 각 단계에서 생기는 다양성, 애매성 등을 다른 층의 지식을 사용하여 협조적으로 해결하며, 또한 인간처럼 직감적 처리와 논리적 처리를 상호협조적으로 정보를 교환하여 패턴을 인식한다. 즉, IPP 모델은 직감과 논리를 융합한 새로운 패턴인식 모델이다.

  • PDF

연삭 작업 표준 설정을 위한 지식형 SIMULTATION SYSTEM

  • 이응숙
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1991년도 춘계학술대회 논문집
    • /
    • pp.347-354
    • /
    • 1991
  • 최근 기계공업에 있어서 컴퓨터 이용은, 메카트로닉스 및 CAC/CAM 등에서 볼 수 있듯이 급속히 진전되고 있다. 이와 더불어 생산 기술에 있어서도 소프트웨어의 비율이 중대함과 더불어, 그의 질적 향상 및 생산성 향상이 강력히 요망되고 있다. 이와 같이 소프트웨어의 중요성이 널리 인식 됨에도 불구하고, 생산시스템 전체를 통합적으로 취급할 수 있는 소프트웨어의 체계는 아직 확립되어 있지 않다. 금후 기계공업을 더욱 고도화 시키고, 국제경쟁력을 확보하기 위해서는 이의 연구개발을 한층 강력히 추진하지 않으면 안될 상황이다. 특히, 숙련공의 기술 및 Know-How에 의존 하는 일이 많은 연삭 가공분야에서는 이러한 전문가의 경험 및 연구로부터 얻은 지식을 컴퓨터의 지식베이스에 집어넣어 인공지능(AI) 기술 및 Expert System을 이용하여 문제를 해결하는 방법은 극히 유효하다고 볼 수 있다. 이에 연삭 작업 표준 설정의 연구의 발전적 연구로서, 최근 급 속히 연구 개발이 진행되고 있는 지식공학을 연삭가공분야에 응용하여, 지금까지 개발한 Siumlation 수법을 상호보강시켜 하나의 지식 처리 system을 구성하고자 한다.

인공지능 사전경험 무시 현상과 수용에 관한 연구: AI Effect를 중심으로 (A study on Discount in Prior Experience of AI and Acceptance: Focusing on AI Effect)

  • 이정선
    • 디지털융복합연구
    • /
    • 제20권3호
    • /
    • pp.241-249
    • /
    • 2022
  • 인공지능은 개인의 일상생활뿐 아니라 전 산업 분야에 적용되며 인공지능 시대라 해도 과언이 아닌 시기가 도래하였다. 그러므로 인공지능 수용에 영향을 주는 요인 파악은 중요하다. 본 연구는 상용화되거나 익숙해진 인공지능은 더는 인공지능이라 인식하지 못하는 AI Effect 현상으로 인공지능 사전경험이 무시되었을 때 인공지능 수용에 어떠한 영향을 미치는지를 분석하였다. 이를 위해 두 번의 실험을 수행하였다. 105명의 성인을 대상으로 한 첫 번째 실험 결과는 실험 대상자 중 32.4%(34명)가 AI Effect가 존재하였고, 이 중 여성이 43.6%(24명), 남성은 20%(10명)가 AI Effect가 존재하는 것을 나타나 여성이 약 2배 정도 높았고, 인공지능 지식 정도가 낮을수록 AI Effect가 존재하는 것으로 나타났다. 두 번째 실험 결과는 성인 240명의 참가자 중 AI Effect가 존재하는 85명만이 대상이었고, 인공지능 경험인지는 인공지능을 적극적으로 수용하게 하는 것으로 나타났다. 본 연구를 통한 AI Effect 이해는 기업에 인공지능의 적극적 수용방안 설정에 도움을 줄 수 있을 것이라 기대된다. 더불어 사용자의 개인 차이와 AI Effect의 관계 규명, AI Effect가 다양한 수용 태도에 미치는 영향 등을 고려한 연구로의 확장을 기대한다.